Highlights d Time-resolved single-cell RNA-seq of EWSR1-FLI1 induction in an Ewing sarcoma cell line d Highly specific transcriptomic signature of EWSR1-FLI1 chimeric oncogene d Sources of transcriptomic heterogeneity in Ewing tumors d Correlations between EWSR1-FLI1 activity and metabolic and other phenotypic states
In order to gain insight into oligogenic disorders, understanding those involving bi-locus variant combinations appears to be key. In prior work, we showed that features at multiple biological scales can already be used to discriminate among two types, i.e. disorders involving true digenic and modifier combinations. The current study expands this machine learning work towards dual molecular diagnosis cases, providing a classifier able to effectively distinguish between these three types. To reach this goal and gain an in-depth understanding of the decision process, game theory and tree decomposition techniques are applied to random forest predictors to investigate the relevance of feature combinations in the prediction. A machine learning model with high discrimination capabilities was developed, effectively differentiating the three classes in a biologically meaningful manner. Combining prediction interpretation and statistical analysis, we propose a biologically meaningful characterization of each class relying on specific feature strengths. Figuring out how biological characteristics shift samples towards one of three classes provides clinically relevant insight into the underlying biological processes as well as the disease itself.
Cell cycle is the most fundamental biological process underlying the existence and propagation of life in time and space. It has been an object for mathematical modeling for long, with several alternative mechanistic modeling principles suggested, describing in more or less details the known molecular mechanisms. Recently, cell cycle has been investigated at single cell level in snapshots of unsynchronized cell populations, exploiting the new methods for transcriptomic and proteomic molecular profiling. This raises a need for simplified semi-phenomenological cell cycle models, in order to formalize the processes underlying the cell cycle, at a higher abstracted level. Here we suggest a modeling framework, recapitulating the most important properties of the cell cycle as a limit trajectory of a dynamical process characterized by several internal states with switches between them. In the simplest form, this leads to a limit cycle trajectory, composed by linear segments in logarithmic coordinates describing some extensive (depending on system size) cell properties. We prove a theorem connecting the effective embedding dimensionality of the cell cycle trajectory with the number of its linear segments. We show how the developed formalism can be applied to model the available single cell datasets and simulate certain properties of the cell cycle trajectories.
Cell cycle is a biological process underlying the existence and propagation of life in time and space. It has been an object for mathematical modeling for long, with several alternative mechanistic modeling principles suggested, describing in more or less details the known molecular mechanisms. Recently, cell cycle has been investigated at single cell level in snapshots of unsynchronized cell populations, exploiting the new methods for transcriptomic and proteomic molecular profiling. This raises a need for simplified semi-phenomenological cell cycle models, in order to formalize the processes underlying the cell cycle, at a higher abstracted level. Here we suggest a modeling framework, recapitulating the most important properties of the cell cycle as a limit trajectory of a dynamical process characterized by several internal states with switches between them. In the simplest form, this leads to a limit cycle trajectory, composed by linear segments in logarithmic coordinates describing some extensive (depending on system size) cell properties. We prove a theorem connecting the effective embedding dimensionality of the cell cycle trajectory with the number of its linear segments. We also develop a simplified kinetic model with piecewise-constant kinetic rates describing the dynamics of lumps of genes involved in S-phase and G2/M phases. We show how the developed cell cycle models can be applied to analyze the available single cell datasets and simulate certain properties of the observed cell cycle trajectories. Based on our model, we can predict with good accuracy the cell line doubling time from the length of cell cycle trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.