<p>Indonesia merupakan salah satu negara dengan keanekaragaman tanaman buah tropika yang cukup tinggi. Keanekaragaman tanaman buah tropika tersebut merupakan satu tantangan dalam melakukan identifikasi. Identifikasi tanaman dapat dilakukan berdasarkan buah, bunga, maupun daun. Identifikasi berdasarkan daun merupakan identifikasi yang lebih mudah dilakukan karena daun akan ada sepanjang masa, sedangkan bunga dan buah mungkin hanya ada pada waktu tertentu. Identifikasi tanaman menggunakan daun dapat dilakukan berdasarkan bentuk, tekstur, maupun warna citra daun tersebut. Pada penelitian ini, ekstraksi fitur gray level co-occurrence matrix (GLCM) dari tekstur citra permukaan daun buah tropika digunakan sebagai input dari pelatihan Jaringan syaraf tiruan untuk proses identifikasi. Secara keseluruhan, pengujian dengan menggunakan hidden neuron sebanyak 7 menghasilkan hasil akurasi terbaik, yaitu 90%.</p><p>Kata kunci: buah tropika, daun, GLCM, jaringan syaraf tiruan, tekstur.</p>
Ahstract-Jamu is an Indonesia herbal medicine made from natural materials such as roots, leaves, fruits, and animals. The purpose of this research is to develop a classification system for jamu efficacy based on the composition of plants using Support Vector Machine (SVM) and to implement the k-means clustering algorithm as a feature selection method. The result of this study was compared to the previous research that using SVM method without feature selection. This study used variances to evaluate the results of clustering. The total of 3138 data herbs and 465 plant species were grouped into 100 clusters with the variance of 0.0094. The managed group succesfuUy reduced the data dimension into 3047 of jamu sample and 236 species of herbs and plants as features. The result of SVM classification using feature selection yielded the accuracy of 71.5%.
Optimization of an objective in the model of linear programming (LP) is widely applied in solving the problems that exist. But with the increasing complexity of these problems, optimization with multiple objectives , known as goal programming (GP) being an option. In this GP, some of these goals were weighted before analysis . In this paper will discuss the formulation of fuzzy goal prongramming (FGP), in which these goals need not be discrete weighted, but enough to consider the decision maker wishes to impose limits on the value of each function's purpose. Fuzzy concept of a fuzzy membership function is applied to functions such objectives to be achieved. The problems in this case is production planning at the company with some goals to be achieved namely income, labor costs, and raw material costs. The result is a model with some objectives can be formulated in FGP models that can be solved with the LP for production planning of the company. Keywords : fuzzy goal programming, linear programming, production planning ABSTRAK Optimalisasi suatu tujuan dalam model linear programming (LP) banyak diaplikasikan dalam menyelesaikan masalah-masalah yang ada. Tapi dengan makin kompleksnya masalah-masalah tersebut, pengoptimalan dengan beberapa tujuan atau dikenal dengan goal programming (GP) menjadi pilihan. Dalam GP ini, beberapa tujuan ini diberi pembobotan sebelum dianalisa. Dalam tulisan ini akan dibahas tentang formulasi fuzzy goal prongramming (FGP), dimana tujuan-tujuan tersebut tidak perlu diboboti secara diskret, tapi cukup dengan mempertimbangkan keinginan pengambil keputusan untuk menentukan batasan nilai pada setiap fungsi tujuan yang ada. Konsep fuzzy berupa fungsi keanggotaan fuzzy diterapkan pada fungsi-fungsi tujuan yang akan dicapai tersebut. Masalah yang digunakan adalah perencanaan produksi pada suatu perusahaan dengan beberapa tujuan yang ingin dicapai yaitu pendapatan, biaya tenaga kerja, dan biaya bahan baku. Hasil yang diperoleh adalah model beberapa tujuan dapat diformulasi dalam model FGP yang dapat diselesaikan dengan LP untuk perencanaan produksi suatu perusahaan. Kata kunci : fuzzy goal programming, linear programming, perencanaan produksi
Abstrak: Masalah yang timbul dalam peramalan hasil produksi pertanian antara lain adalah sulit untuk mendapatkan data yang lengkap dari variabel-variabel yang mempengaruhi hasil pertanian dalam jangka panjang. Kondisi ini akan semakin sulit ketika peramalan mencakup wilayah yang cukup luas. Akibatnya, variabel-variabel tersebut harus diinterpolasi sehingga akan menyebabkan bias terhadap hasil peramalan. (1) Mengetahui gambaran meta analisis penelitian peramalan produk pertanian menggunakan Long Short Term Memory (LSTM), (2) Mengetahui penelitian meta analisis cakupan wilayah, komoditi dan periode data terkait produk pertanian terutama gandum, kedelai jagung dan pisang, (3) Mengetahui praproses data antara lain menghilangkan data yang tidak sesuai, menangani data yang kosong, serta memilih variabel tertentu. Sebagai solusi dari masalah tersebut, peramalan hasil produksi pertanian dilakukan berdasarkan data historis hasil produksi pertanian. Salah model peramalan yang saat ini banyak dikembangkan adalah model jaringan syaraf LSTM yang merupakan pengembangan dari model jaringan syaraf recurrent (RNN). Tulisan ini merupakan hasil kajian literatur pengembangan model-model LSTM untuk peramalan hasil produksi pertanian meliputi gandum, kedelai, jagung dan pisang. Perbaikan kinerja model LSTM dilakukan mulai dari praproses, tuning hyperparameter, sampai dengan penggabungan dengan metode lain. Berdasarkan kajian tersebut, model-model LSTM memiliki kinerja yang lebih baik dibandingkan dengan model benchmark. Kata kunci: jaringan syaraf, LSTM, peramalan, produksi pertanian, RNN. Abstract: Problems that arise in forecasting agricultural products include the difficulty of obtaining complete data on the variables that affect agricultural yields in the long term. This condition will be more difficult when the forecast covers a large area. As a result, these variables must be interpolated so that it will cause a bias towards the forecasting results. (1) Knowing the description of research maps for forecasting agricultural products using Long short term memory (LSTM), (2) Knowing Research Coverage areas, commodities, and data periods related to agricultural products, especially Wheat, Soybeans, corn, and bananas, (3) Knowing Preprocessing data between others remove inappropriate data, handle blank data, and select certain variables. This paper is the result of a literature review on the development of LSTM models for crop yields forecasting including wheat, soybeans, corn, and bananas. The Performance Improvements of the LSTM models were carried out by preprocessing data, hyperparameter tuning, and combining LSTM with other methods. Based on this study, LSTM models have better performance compared to the benchmark model. Keywords: neural network, LSTM, forecasting, crop yield, RNN.
Shorea adalah jenis meranti yang memiliki nilai ekonomis yang tinggi. Shorea tergolong dalam famili Dipterocarpaceae yang memiliki 194 spesies yang tumbuh di daerah tropis. Shorea merupakan jenis yang sulit untuk diidentifikasi karena memiliki banyak kemiripan. Untuk mengatasi kesulitan tersebut, penelitian ini mengidentifikasi Shorea berdasarkan citra daun. Jumlah spesies yang digunakan penelitian ini adalah 10 jenis Shorea. Metode ekstraksi fitur yang digunakan adalah 2 dimensional principal component analysis (2D-PCA) dengan metode klasifikasi KNN. Penelitian ini memiliki 4 percobaan yang dibagi menjadi komponen R, G, B, dan grayscale. Hasil rata-rata akurasi terbaik sebesar 75% pada komponen G dengan kontribusi nilai eigen 85%.<br /><br />Kata kunci: 2 Dimensional Principal Component Analysis, K-Nearest Neighbour, Shorea
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.