The development of CDK and GSK3 inhibitors has been regarded as a potential therapeutic approach, and a substantial number of diverse structures have been reported to inhibit CDKs and GSK-3β in recent years. Only a few molecules have gone through or are currently undergoing clinical trials as CDK and GSK inhibitors. In this paper, we prepared valmerins, a new family containing the tetrahydropyrido[1,2-a]isoindone core. The fused heterocycle was prepared with a straightforward synthesis that was functionalized by a (het)arylurea. Twelve valmerins inhibited the CDK5 and GSK3 with an IC(50) < 100 nM. A semiquantitative kinase scoring was realized, and a cellular screening was done. At the end of our study, we investigated the in vivo potency of one valmerin. Mice exhibited good tolerance to our lead, which proved its efficacy and clearly blocked tumor growth. Valmerins appear also as good candidates for further development as anticancer agents.
An efficient synthetic strategy was developed to modulate the structure of the tetrahydropyridine isoindolone (Valmerin) skeleton. A library of more than 30 novel final structures was generated. Biological activities on CDK5 and GSK3 as well as cellular effects on cancer cell lines were measured for each novel compound. Additionally docking studies were performed to support medicinal chemistry efforts. A strong GSK3/CDK5 dual inhibitor (38, IC50 GSK3/CDK5 32/84 nM) was obtained. A set of highly selective GSK3 inhibitors was synthesized by fine-tuning structural modifications (29 IC50 GSK3/CDK5 32/320 nM). Antiproliferative effects on cells were correlated with the in vitro kinase activities and the best effects were obtained with lung and colon cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.