The site of cell division in bacterial cells is placed with high fidelity at a designated position, usually the midpoint of the cell. In normal cell division in Escherichia coli this is accomplished by the action of the Min proteins, which maintain a high concentration of a septation inhibitor near the ends of the cell, and a low concentration at midcell. This leaves the midcell site as the only available location for formation of the division septum. In other species, such as Bacillus subtilis, this general paradigm is maintained, although some of the proteins differ and the mechanisms used to localize the proteins vary. A second mechanism of negative regulation, the nucleoid-occlusion system, prevents septa forming over nucleoids. This system functions in Gram-negative and Gram-positive bacteria, and is especially important in cells that lack the Min system or in cells in which nucleoid replication or segregation are defective. Here, we review the latest findings on these two systems.
RNaseE is the main component of the RNA degradosome of Escherichia coli, which plays an essential role in RNA processing and decay. Localization studies showed that RNaseE and the other known degradosome components (RNA helicase B, polynucleotide phosphorylase, and enolase) are organized as helical filamentous structures that coil around the length of the cell. These resemble the helical structures formed by the MreB and MinD cytoskeletal proteins. Formation of the RNaseE cytoskeletal-like structure requires an internal domain of the protein that does not include the domains required for any of its known interactions or the minimal domain required for endonuclease activity. We conclude that the constituents of the RNA degradosome are components of the E. coli cytoskeleton, either assembled as a primary cytoskeletal structure or secondarily associated with another underlying cytoskeletal element. This suggests a previously unrecognized role for the bacterial cytoskeleton, providing a mechanism to compartmentalize proteins that act on cytoplasmic components, as exemplified by the RNA processing and degradative activities of the degradosome, to regulate their access to important cellular substrates.RNA processing ͉ PNPase ͉ enolase ͉ RNA helicase
Background Nanopore long-read sequencing technology greatly expands the capacity of long-range, single-molecule DNA-modification detection. A growing number of analytical tools have been developed to detect DNA methylation from nanopore sequencing reads. Here, we assess the performance of different methylation-calling tools to provide a systematic evaluation to guide researchers performing human epigenome-wide studies. Results We compare seven analytic tools for detecting DNA methylation from nanopore long-read sequencing data generated from human natural DNA at a whole-genome scale. We evaluate the per-read and per-site performance of CpG methylation prediction across different genomic contexts, CpG site coverage, and computational resources consumed by each tool. The seven tools exhibit different performances across the evaluation criteria. We show that the methylation prediction at regions with discordant DNA methylation patterns, intergenic regions, low CG density regions, and repetitive regions show room for improvement across all tools. Furthermore, we demonstrate that 5hmC levels at least partly contribute to the discrepancy between bisulfite and nanopore sequencing. Lastly, we provide an online DNA methylation database (https://nanome.jax.org) to display the DNA methylation levels detected by nanopore sequencing and bisulfite sequencing data across different genomic contexts. Conclusions Our study is the first systematic benchmark of computational methods for detection of mammalian whole-genome DNA modifications in nanopore sequencing. We provide a broad foundation for cross-platform standardization and an evaluation of analytical tools designed for genome-scale modified base detection using nanopore sequencing.
Accumulating evidence indicates that RNA metabolism components assemble into supramolecular cellular structures to mediate functional compartmentalization within the cytoplasmic membrane of the bacterial cell. This cellular compartmentalization could play important roles in the processes of RNA degradation and maturation. These components include Hfq, the RNA chaperone protein, which is involved in the post-transcriptional control of protein synthesis mainly by the virtue of its interactions with several small regulatory ncRNAs (sRNA). The Escherichia coli Hfq is structurally organized into two domains. An N-terminal domain that folds as strongly bent β-sheets within individual protomers to assemble into a typical toroidal hexameric ring. A C-terminal flexible domain that encompasses approximately one-third of the protein seems intrinsically unstructured. RNA-binding function of Hfq mainly lies within its N-terminal core, whereas the function of the flexible domain remains controversial and largely unknown. In the present study, we demonstrate that the Hfq-C-terminal region (CTR) has an intrinsic property to self-assemble into long amyloid-like fibrillar structures in vitro. We show that normal localization of Hfq within membrane-associated coiled structures in vivo requires this C-terminal domain. This finding establishes for the first time a function for the hitherto puzzling CTR, with a plausible central role in RNA transactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.