Waterlogging stress (WS) induces ethylene (ET) and polyamine (spermine, putrescine, and spermidine) production in plants, but their reprogramming is a decisive element for determining the fate of the plant upon waterlogging-induced stress. WS can be challenged by exploring symbiotic microbes that improve the plant’s ability to grow better and resist WS. The present study deals with identification and application of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophyte Trichoderma asperellum (strain MAP1), isolated from the roots of Canna indica L., on wheat growth under WS. MAP1 positively affected wheat growth by secreting phytohormones/secondary metabolites, strengthening the plant’s antioxidant system and influencing the physiology through polyamine production and modulating gene expression. MAP1 inoculation promoted yield in comparison to non-endophyte inoculated waterlogged seedlings. Exogenously applied ethephon (ET synthesis inducer) and 1-aminocyclopropane carboxylic acid (ACC; ET precursor) showed a reduction in growth, compared to MAP1-inoculated waterlogged seedlings, while amino-oxyacetic acid (AOA; ET inhibitor) application reversed the negative effect imposed by ET and ACC, upon waterlogging treatment. A significant reduction in plant growth rate, chlorophyll content, and stomatal conductance was noticed, while H2O2, MDA production, and electrolyte leakage were increased in non-inoculated waterlogged seedlings. Moreover, in comparison to non-inoculated waterlogged wheat seedlings, MAP1-inoculated waterlogged wheat exhibited antioxidant–enzyme activities. In agreement with the physiological results, genes associated with the free polyamine (PA) biosynthesis were highly induced and PA content was abundant in MAP1-inoculated seedlings. Furthermore, ET biosynthesis/signaling gene expression was reduced upon MAP1 inoculation under WS. Briefly, MAP1 mitigated the adverse effect of WS in wheat, by reprogramming the PAs and ET biosynthesis, which leads to optimal stomatal conductance, increased photosynthesis, and membrane stability as well as reduced ET-induced leaf senescence.
Global climate change has imposed harsh environmental conditions such as drought. Naturally, the most compatible fungal consortia operate synergistically to enhance plant growth and ecophysiological responses against abiotic strains. Yet, little is known about the interactions between phytohormone-producing endophytic fungal symbionts and plant growth under drought stress. The existing research was rationalized to recognize the role of newly isolated drought-resistant, antioxidant-rich endophytic fungal consortia hosting a xerophytic plant, Carthamus oxycantha L., inoculated to Moringa oleifera L. grown under drought stress of 8% PEG (polyethylene glycol-8000). Under drought stress, the combined inoculation of endophytic strain Microdochium majus (WA), Meyerozyma guilliermondi (TG), and Aspergillus aculeatus (TL3) exhibited a significant improvement in growth attributes such as shoot fresh weight (1.71-fold), shoot length (0.86-fold), root length (0.65-fold), dry weight (2.18-fold), total chlorophyll (0.46-fold), and carotenoids (0.87-fold) in comparison to control (8% PEG). Primary and secondary metabolites were also increased in M. oleifera inoculated with endophytic consortia, under drought stress, such as proteins (1.3-fold), sugars (0.58-fold), lipids (0.41-fold), phenols (0.36-fold), flavonoids (0.52-fold), proline (0.6-fold), indole acetic acid (IAA) (4.5-fold), gibberellic acid (GA) (0.7-fold), salicylic acid (SA) (0.8-fold), ascorbic acid (ASA) (1.85-fold), while abscisic acid (ABA) level was decreased (−0.61-fold) in comparison to the control (8% PEG). Under drought stress, combined inoculation (WA, TG, TL3) also promoted the antioxidant activities of enzymes such as ascorbate peroxidase (APX) (3.5-fold), catalase (CAT) activity (1.7-fold), and increased the total antioxidant capacity (TAC) (0.78-fold) with reduced reactive oxygen species (ROS) such as H2O2 production (-0.4-fold), compared to control (8% PEG), and stomatal aperture was larger (3.5-fold) with a lesser decrease (-0.02-fold) in water potential. Moreover, combined inoculation (WA, TG, TL3) up regulated the expression of MolHSF3, MolHSF19, and MolAPX genes in M. oleifera under drought stress, compared to the control (8% PEG), is suggestive of an important regulatory role for drought stress tolerance governed by fungal endophytes. The current research supports the exploitation of the compatible endophytic fungi for establishing the tripartite mutualistic symbiosis in M. oleifera to alleviate the adverse effects of drought stress through strong antioxidant activities.
During development of the roach from larvae to adults relative gut length increases from 44 to 104% of the body length. Gut passage rate correlates with gut length, ranging from 2.25 h in larvae to 6.2 h in adults (at 20 & 1°C). In controlled experiments (20°C, feeding on carp diet) tryptic activity of the gut content increases with the age of the fish. In larvae artificial diet leads to considerable increase of tryptic activity, but to low growth rate and finally to total mortality. The reabsorption of digestive enzymes in the hindgut is efficient only in adults in which tryptic activity in the second half of the intestine is reduced to about 12% of total activity.
Downy mildew (DM), caused by P. cubensis, is harmful to cucurbits including luffa, with increased shortcomings associated with its control through cultural practices, chemical fungicides, and resistant cultivars; there is a prompt need for an effective, eco-friendly, economical, and safe biocontrol approach. Current research is therefore dealt with the biocontrol of luffa DM1 through the endophytic fungi (EF) consortium. Results revealed that T. harzianum (ThM9) and T. virens (TvA1) showed pathogen-dependent inducible metabolic production of squalene and gliotoxins by higher gene expression induction of SQS1/ERG9 (squalene synthase) and GliP (non-ribosomal peptide synthetase). Gene expression of lytic enzymes of EF was also induced with subsequently higher enzyme activities upon confrontation with P. cubensis. EF-inoculated luffa seeds showed efficient germination with enhanced growth potential and vigor of seedlings. EF-inoculated plants showed an increased level of growth-promoting hormone GA with higher gene expression of GA2OX8. EF-pre-inoculated seedlings were resistant to DM and showed an increased GSH content and antioxidant enzyme activities (SOD, CAT, POD). The level of MDA, H2O2, REL, and disease severity was reduced by EF. ACC, JA, ABA, and SA were overproduced along with higher gene expression of LOX, ERF, NCED2, and PAL. Expression of defense-marker genes (PPO, CAT2, SOD, APX, PER5, LOX, NBS-LRR, PSY, CAS, Ubi, MLP43) was also modulated in EF-inoculated infected plants. Current research supported the use of EF inoculation to effectively escalate the systemic immunity against DM corresponding to the significant promotion of induced systemic resistance (ISR) and systemic acquired resistance (SAR) responses through initiating the defense mechanism by SA, ABA, ET, and JA biosynthesis and signaling pathways in luffa.
Climate change is a major cause of the world's food security problems, and soil salinity is a severe hazard for a variety of crops. The exploitation of endophytic fungi that are known to have a positive association with plant roots is preferred for improving plant growth, yield, and overall performance under salt stress. The current study thus rationalized to address how salt stress affected the growth, biochemical properties, antioxidant capacity, endogenous indole-3-acetic acid (IAA), and the ionic status of maize associated with endophytic fungus (Stemphylium lycopersici). According to the findings, salt stress reduced chlorophyll a and b, total chlorophyll, total protein, sugars, lipids, and endogenous IAA levels. Enhanced values of chlorophyll a/b ratio, carotenoids, secondary metabolites (phenol, flavonoids, and tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline, and lipid peroxidation were noticed in maize plants under salt stress. Increased ionic content of Na+, Cl−, Na+/K+, and Na+/Ca2+ ratio, as well as decreased Ca2+, K+, Mg2+, N, and P contents, were also found in salt-stressed maize plants. In comparison to the non-saline medium, endophytic association promoted the antioxidant enzyme activities (798.7 U/g protein; catalase activity, 106 U/g protein; ascorbate peroxidase activity), IAA content (3.47 mg/g FW), and phenolics and flavonoids (88 and 1.68 μg/g FW, respectively), and decreased MDA content (0.016 nmol/g FW), Na+ ion content (18 mg/g dry weight), Cl− ion (16.6 mg/g dry weight), and Na+/K+ (0.78) and Na+/Ca2+ (1.79) ratios, in maize plants under salt stress, whereas Ca2+, K+, Mg2+, N, and P contents were increased in maize plants associated with S. lycopersici under salt stress. Current research exposed the role of S. lycopersici as an effective natural salt stress reducer and maize growth promoter; hence, it can be used as a biofertilizer to ameliorate salt stress tolerance in crops along with better growth performance in saline regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.