Neural network is widely used for image classification problems, and is proven to be effective with high successful rate. However one of its main challenges is the significant amount of time it takes to train the network. The goal of this research is to improve the neural network training algorithms and apply and test them in classification and recognition problems. In this paper, we describe a method of applying Bayesian regularization to improve Levenberg-Marquardt (LM) algorithm and make it better usable in training neural networks. In the experimental part, we qualify the modified LM algorithm using Bayesian regularization and use it to determine an appropriate number of hidden layers in the network to avoid overtraining. The result of the experiment was very encouraging with a 98.8% correct classification when run on test samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.