This study first proposes a temperature model to calculate the temperature indices upon which temperature-based derivatives are written. The model is designed as a mean-reverting process driven by a Levy process to represent jumps and other features of temperature. Temperature indices are mainly measured as deviations from a base temperature, and, hence, the proposed model includes jumps because they may constitute an important part of this deviation for some locations. The estimated value of a temperature index and its distribution in this model apply an inversion formula to the temperature model. Second, this study develops a pricing process over calculated index values, which returns a customized price for temperature-based derivatives considering that temperature has unique effects on every economic entity. This personalized price is also used to reveal the trading behavior of a hypothesized entity in a temperature-based derivative trade with profit maximization as the objective. Thus, this study presents a new method that does not need to evaluate the risk-aversion behavior of any economic entity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.