Wavelet based image processing techniques do not strictly follow the conventional probabilistic models that are unrealistic for real world images. However, the key features of joint probability distributions of wavelet coefficients are well captured by HMT (Hidden Markov Tree) model. This paper presents the HMT model based technique consisting of Wavelet based Multiresolution analysis to enhance the results in image processing applications such as compression, classification and denoising. The proposed technique is applied to colored video sequences by implementing the algorithm on each video frame independently. A 2D (Two Dimensional) DWT (Discrete Wavelet Transform) is used which is implemented on popular HMT model used in the framework of Expectation-Maximization algorithm. The proposed technique can properly exploit the temporal dependencies of wavelet coefficients and their non-Gaussian performance as opposed to existing wavelet based denoising techniques which consider the wavelet coefficients to be jointly Gaussian or independent. Denoised frames are obtained by processing the wavelet coefficients inversely. Comparison of proposed method with the existing techniques based on CPSNR (Coloured Peak Signal to Noise Ratio), PCC (Pearson’s Correlation Coefficient) and MSSIM (Mean Structural Similarity Index) has been carried out in detail.The proposed denoising method reveals improved results in terms of quantitative and qualitative analysis for both additive and multiplicative noise and retains nearly all the structural contents of a video frame.
Wavelet based statistical image denoising is vital preprocessing technique in real world imaging. Most of the medical videos inherit system introduced noise during acquisition as a result of additional image capturing techniques, resulting in the poor quality of video for examination. So, we needed a trade-off between preservation and noise reduction of the actual image content to retains all the necessary information. The existing techniques are based on time-frequency domain where the wavelet coefficients need to be independent or jointly Gaussian. In denoising arena there is a need to exploit the temporal dependencies of wavelet coefficients with non-Gaussian nature. Here we present a YCbCr (Luminance-Chrominance) based denoising strategy on Hidden Markov Model (HMM) based on Multiresolution Analysis in the framework of Expectation-Maximization algorithm. Proposed algorithm applies denoising technique independently on each frame of the video. It models Non-Gaussian statistics of each wavelet coefficient and captures the statistical dependencies between coefficients. Denoised frames are restored inversely by processing the wavelet coefficients. Significant results are visualized through objective as well as subjective analysis. Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM) like parameters are used for the quality assessment of proposed method in comparison with Gray scale and Red, Green, Blue (RGB) scale videos coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.