Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.
The use of mesenchymal stem cells (MSCs) for cartilage repair has generated much interest owing to their multipotentiality. However, their significant presence in peripheral blood (PB) has been a matter of much debate. The objectives of this study are to isolate and characterize MSCs derived from PB and, compare their chondrogenic potential to MSC derived from bone marrow (BM). PB and BM derived MSCs from 20 patients were isolated and characterized. From 2 ml of PB and BM, 5.4 AE 0.6 million and 10.5 AE 0.8 million adherent cells, respectively, were obtained by cell cultures at passage 2. Both PB and BM derived MSCs were able to undergo tri-lineage differentiation and showed negative expression of CD34 and CD45, but positively expressed CD105, CD166, and CD29. Qualitative and quantitative examinations on the chondrogenic potential of PB and BM derived MSCs expressed similar cartilage specific gene (COMP) and proteoglycan levels, respectively. Furthermore, the s-GAG levels expressed by chondrogenic MSCs in cultures were similar to that of native chondrocytes. In conclusion, this study demonstrates that MSCs from PB maintain similar characteristics and have similar chondrogenic differentiation potential to those derived from BM, while producing comparable s-GAG expressions to chondrocytes. ß
BackgroundThe Asia Pacific Society of Infection Control (APSIC) launched the APSIC Guidelines for the Prevention of Surgical Site Infections in 2018. This document describes the guidelines and recommendations for the setting prevention of surgical site infections (SSIs). It aims to highlight practical recommendations in a concise format designed to assist healthcare facilities at Asia Pacific region in achieving high standards in preoperative, perioperative and postoperative practices.MethodThe guidelines were developed by an appointed workgroup comprising experts in the Asia Pacific region, following reviews of previously published guidelines and recommendations relevant to each section.ResultsIt recommends that healthcare facilities review specific risk factors and develop effective prevention strategies, which would be cost effective at local levels. Gaps identified are best closed using a quality improvement process. Surveillance of SSIs is recommended using accepted international methodology. The timely feedback of the data analysed would help in the monitoring of effective implementation of interventions.ConclusionsHealthcare facilities should aim for excellence in safe surgery practices. The implementation of evidence-based practices using a quality improvement process helps towards achieving effective and sustainable results.
The use of growth differentiation factor 5 (GDF-5) in damaged tendons has been shown to improve tendon repair. It has been hypothesized that further improvements may be achieved when GDF-5 is used to promote cell proliferation and induce tenogenic differentiation in human bone marrow-derived mesenchymal stem cells (hMSCs). However, the optimal conditions required to produce these effects on hMSCs have not been demonstrated in previous studies. A study to determine cell proliferation and tenogenic differentiation in hMSCs exposed to different concentrations of GDF-5 (0, 5, 25, 50, 100 and 500 ng/ml) was thus conducted. No significant changes were observed in the cell proliferation rate in hMSCs treated at different concentrations of GDF-5. GDF-5 appeared to induce tenogenic differentiation at 100 ng/ml, as reflected by (1) a significant increase in total collagen expression, similar to that of the primary native human tenocyte culture; (2) a significant upregulation in candidate tenogenic marker gene expression, i.e. scleraxis, tenascin-C and type-I collagen; (3) the ratio of type-I collagen to type-III collagen expression was elevated to levels similar to that of human tenocyte cultures, and (4) a significant downregulation of the non-tenogenic marker genes runt-related transcription factor 2 and sex determining region Y (SRY)-box 9 at day 7 of GDF-5 induction, further excluding hMSC differentiation into other lineages. In conclusion, GDF-5 does not alter the proliferation rates of hMSCs, but, instead, induces an optimal tenogenic differentiation response at 100 ng/ml.
The use of light for medical treatment has been studied previously. In this study, we examined the effect of light from a red light-emitting diode on osteogenic differentiation of mouse mesenchymal stem cells (D1 cells) which were cultured in the presence of osteogenic differentiation medium (ODM) for 3 days, then exposed to a red light-emitting diode (LED) light of 647 nm wavelength once for 10 s, 30 s or 90 s with radiation energies of 0.093 J, 0.279 J and 0.836 J, respectively. D1 cells in the presence of ODM differentiated into osteoblasts, and this process was enhanced on exposure to LED light in ODM medium. This effect was confirmed by increased Alizarin red staining, higher alkaline phosphatase (ALP) activity, higher mRNA expressions of osteocalcin, collagen type I, osteopontin and Runt-related transcription factor2 (Runx2), and higher levels by reverse transcriptase-polymerase chain reaction (RT-PCR) and by increased immunofluorescence staining against cluster of differentiation 44 (CD44) by immunofluorescence microscopy, confocal microscopy and flow cytometric analysis. These data suggest that osteogenic differentiation of mesenchymal stem cells (MSCs) in ODM is enhanced by LED light exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.