A standardized source of light is essential for visual color assessments, which is why lighting booths were developed. For the best results in visual assessment, it is important to consider the right choice of light source, the right viewing conditions, and the variability of the viewer. To date, many light booth technologies have been introduced to meet user demands. Since most of the light sources on the market are characterized by the designer or manufacturer, the resulting variations from booth-to-booth remain. In this study, we compared the performance of two standard light booths to assess the color difference of eleven metameric pairs. In this study, we checked an earlier technology-based light booth that is still used in the textile industry and contains illuminant A (Tungsten lamp) with CCT 2700 K, TL84 (tri-band fluorescent tube) with CCT 4000 K, and simulator D65 (CCT 6500 K) with a different light booth whose original light sources have been replaced by currently available LED retro kits from equivalent CCTs. As an inexperienced customer or industrial user, our question was, how important is this replacement? The results revealed that two different standard lighting technologies with similar CCTs cannot reproduce the same estimates because the light sources produced different SPDs. It is illustrating that caution is necessary when comparing results obtained from two different light booths containing light sources with similar CCTs but different SPDs. This comparative study suggested that the variability of the light sources’ SPDs or the observer or the sample should be modeled considering light booth’s technology to estimate its contribution to the overall variability. The close relationship between perceived and CAM02-UCS suggests that if both booths are used after the light sources have been calibrated, a formula based on color appearance models must be used to predict color appearance. To obtain better agreement between perceived and calculated color difference, one must need to avoid light booths with nominally white light sources.
LEDs or light emitting diodes of the lighting class dominate both the indoor and outdoor lighting industries today due to their accuracy and consumer-friendly color temperature. In the context of color science, it is necessary to analyze both the spectral power distribution of lighting and the human characteristics of color perception under these lights. In this article, we provide estimates of the appearance of eleven metameric pairs under LEDs with four correlated color temperatures and six illuminance levels, using color difference formulas based on the CIELAB, CAM02-UCS, and CAM16-UCS models to verify our estimates. We followed ASTM D4086 standard visual methods for detecting metamerism and for estimating the magnitude of a metameric color difference. Our investigations found that color appearance models are more reliable than CIELAB in evaluating color difference under various LED conditions. CAM16-UCS more accurately predicted the color difference estimates between all three formulas. Our comparative study confirms that the variation in the estimates with the CCT and illuminance levels of the LED sources depends on the color appearance model used. The results also showed that in order to determine the color difference of metameric pairs, optimal conditions regarding the colorimetric properties of the samples and the variability of the observer should be considered separately. We noticed an increasing correlation trend with increasing illuminance. However, there was no such increase or decrease trend in CCTs. The trend of the STRESS change in the color appearance models showed the influence of the chromatic adaptation, but the establishment of adaptation patterns is far beyond the scope of this work. Although our research has had limitations on correlated color temperature and illuminance, we believe that it can be beneficial for the lighting application to ensure correct lighting decisions when assessing the color differences of metameric pairs.
Whiteness is an attribute of color perception with high brightness and low colorfulness. In this study, the correlation between instrumental measurement and visual assessment of whiteness of 40 optically brightened white samples was investigated under a LED light source of correlated color temperature (CCT) 5000K combined with Wood's UV-A lamp. Due to over exposure of UV radiation, tested samples were outside of CIE limit. In those cases, standard CIE whiteness formula show significant shift in whiteness interval scale. A high correlation was identified between visual assessment and modified Vik-Viková whiteness formula. The investigations have also shown that the existing CIBA plastic whiteness scale needs to be expanded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.