In this study, CoCrFeNiTi 0.5 Al x high-entropy alloys were produced by induction melting and their dry sliding wear behavior was examined at different temperatures. In addition to face-centered cubic (FCC) phases, low amounts of a tetragonal phase were detected in the microstructures of alloys without Al and microscratches were formed by wear particles on the worn surfaces of the alloy specimens. Two body-centered cubic (BCC) phases were detected in the alloy with 0.5Al and a fatigue-related extrusion wear mechanism was detected on the worn surface. The alloy specimen with a high Al content exhibited the best wear characteristics. No wear tracks were formed in single-phase BCC intermetallic alloys at room temperature and they exhibited a higher wear strength at high temperatures when compared to other samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.