Glucocorticoids released by stress bind to glucocorticoid (GR) and/or mineralocorticoid receptors (MR) to exert negative feedback of subsequent hypothalamic-pituitary-adrenal (HPA) responses to stress. Feedback inhibition is implicated in habituation of HPA activity to repeated exposure to the same (homotypic) stressor. We hypothesized that the posterior paraventricular thalamus (pPVTh) is a site where corticosterone acts to exert negative feedback during repeated stress and that is important for habituation. As previously reported, the pPVTh inhibits HPA responses to homotypic and heterotypic stressors in repeatedly, but not acutely, stressed rats. We conducted a series of experiments involving intra-pPVTh administration of MR and/or GR agonists or antagonists during different time frames over 8 d of restraint. MR exist in the pPVTh, as do GR as shown by our immunocytochemical results. Acute intra-pPVTh injection of MR and/or GR antagonist before the eighth restraint did not alter expression of habituation. Because habituation may develop before d 8, we manipulated GR and MR in the pPVTh throughout 8 d of stress using intra-pPVTh corticosterone implants, which enhanced habituation on d 8 without affecting acute stress responses. Conversely, daily intra-pPVTh injections of GR and MR antagonists on d 1-7 of restraint prevented habituation on d 8. These data suggest that corticosterone released during repeated stress can act at GR and MR in the pPVTh to inhibit HPA responses to homotypic stress. We also found that some GR-containing cells in the pPVTh project to the medial prefrontal cortex and basolateral amygdala, suggesting that pPVTh-induced inhibition of HPA activity is potentially mediated by its projections to these select limbic structures.
The hypothalamic-pituitary-adrenal (HPA) axis habituates, or gradually decreases its activity, with repeated exposure to the same stressor. During habituation, the HPA axis likely requires input from cortical and limbic regions involved in processing of cognitive information that is important in coping to stress. Brain regions such as the medial prefrontal cortex (mPFC) are recognized as important in mediating these processes. The mPFC modulates stress-related behavior and some evidence suggests that the mPFC regulates acute and repeated stress-induced HPA responses. Interestingly, corticotropin releasing hormone(CRH)-1 receptors, which integrate neuroendocrine, behavioral and autonomic responses to stress, are localized in the mPFC but have not been specifically examined with respect to HPA regulation. We hypothesized that CRH receptor activity in the mPFC contributes to stress-induced regulation of HPA activity and anxiety-related behavior, and that CRH release in the mPFC may differentially regulate HPA responses in acutely-compared to repeatedly-stressed animals. In the present experiments, we found that blockade of CRH receptors in the mPFC with the non-selective receptor antagonist, D-Phe-CRH (50ng or 100ng) significantly inhibited HPA responses compared to vehicle regardless of whether animals were exposed to a single, acute 30min restraint or to the eighth 30min restraint. We also found that intra-mPFC injections of CRH (20ng) significantly increased anxiety-related behavior in the elevated plus maze in both acutely-and repeatedly-restrained groups compared to vehicle. Together, these results suggest an excitatory influence of CRH in the mPFC on stress-induced HPA activity and anxiety-related behavior regardless of prior stress experience.
The anxiolytic effects of opiates active at the mu-opioid receptor (μ-OR) may be ascribed, in part, to suppression of neurons that are responsive to the stress-associated peptide, corticotropin releasing factor (CRF), in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). The CRF receptor (CRFr) and μ-OR are expressed in both the CeA and BNST, but their subcellular relationship to each other is not known in either region. To address this question, we used dual electron microscopic immunolabeling of μ-OR and CRFr in the mouse lateral CeA and anterolateral BNST. Immunolabeling for each receptor was detected in the same as well as in separate somatic, dendritic and axonal profiles of neurons in each region. CRFr had a plasmalemmal or cytoplasmic distribution in many dendrites, including those co-expressing μ-OR. The co-expression of CRFr and μ-OR also was seen near excitatory-type synapses on dendritic spines. In both the CeA and BNST, over 50% of the CRFr-labeled dendritic profiles (dendrites and spines) contained immunoreactivity for the μ-OR. However, less than 25% of the dendritic profiles containing the μ-OR were labeled for CRFr in either region, suggesting that opiate activation of the μ-OR affects many neurons in addition to those responsive to CRF. The dendritic profiles containing CRFr and/or μ-OR received asymmetric, excitatory-type synapses from unlabeled or CRFr-labeled axon terminals. In contrast, the μ-OR was identified in terminals forming symmetric, inhibitory-type synapses. Thus, in both the CeA and BNST, μ-OR and CRFr have strategic locations for mediation of CRF and opioid effects on the postsynaptic excitability of single neurons, and on the respective presynaptic release of excitatory and inhibitory neurotransmitters. The commonalities in the synaptic location of both receptors in the CeA and BNST suggest that this is a fundamental cellular association of relevance to both drug addiction and stress-induced disorders. Keywords stress; addiction; relapse; withdrawal; anxiety; electron microscopic immunolabeling *Correspondence to: Dr. Azra Jaferi, Department of Neurology and Neuroscience, Cornell University Medical College, 411 E 69th St, Room KB-410, New York, NY 10021, Tel: (212) 570-2900, ext 326, Fax: (212) 998-3672, E-mail: E-mail: azj2002@med.cornell.edu. Section Editor: Dr. Menahem Segal Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Endogenous opioids strongly influence neuroendocrine, autonomic and behavioral responses to stress in a variety of species (Morris et al, 1990;McCubbin et al, 1993;McCubbin, 1993;Sufk...
Corticotrophin-releasing factor (CRF) is expressed in the central nucleus of the amygdala (CeA), where the CRF receptor (CRFr) plays an important role in anxiety-and stress-related behaviors. To determine the subcellular sites of CRFr activation in this region, we examined the electron microscopic immunolabeling of antisera recognizing CRF or CRFr. The ultrastructural analysis was principally conducted in the lateral subdivision of the rat CeA, with comparisons being made in mice so as to optimally utilize mutant mice in control experiments. The CRFr labeling was seen in many small dendrites and dendritic spines as well as in a few somata, large dendrites, axons, and axon terminals or more rarely in glial processes. Approximately 35% of the CRFr-labeled dendrites contained CRF immunoreactivity, which was distributed diffusely throughout the cytoplasm, or specifically affiliated with either endomembranes or large dense-core vesicles. The CRFimmunoreactive vesicles also were present in somata and axon terminals with or without CRFr labeling. The CRF immunoreactivity was usually absent from both terminals and dendrites joined by asymmetric, excitatory-type synapses, where a postsynaptic location of the CRFr was commonly observed. Numerous terminals containing both CRF and CRFr were seen, however, within the neuropil and sometimes apposing the excitatory synapses. These results provide ultrastructural evidence for a primary involvement of CRF receptors in modulation of the postsynaptic excitability of CeA neurons, an effect that may be limited by the availability of CRF. The findings have important implications for understanding CRF mediation of rapid responses to stress. Indexing termsautoregulation; stress; autonomic; limbic; drug addictionThe central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST) are critical components of the glucocorticoid-sensitive extrahypothalamic circuit involved in fear and anxiety as well as stress and addictive disorders (Gray and Bingaman, 1996;Aston-Jones et al., 1999;Curtis et al., 2002;Cook, 2004;Santibanez et al., 2005). Both regions contain neurons that express CRF (Swanson et al., 1983;Bale and Vale, 2004;Asan et al., 2005), and have extensive bidirectional connections with each other (Erb et al., 2001). The CRFcontaining neurons are mainly located in the CeA lateral subdivision (CeL) that 1) receives substantial input from midline thalamic nuclei implicated in arousal and attention (Li and Kirouac, 2008), and 2) projects extensively to hypothalamic and brainstem regions involved in neuroendocrine and autonomic responses (Veening et al., 1984;Moga and Gray, 1985 Sakanaka et al., 1986;Van Bockstaele et al., 1998;Wu et al., 1999;Curtis et al., 2002). The involvement of these neurons in drug addiction is strongly supported by the marked elevation of CRF peptide and mRNA in the CeA of rats receiving chronic morphine or cocaine administration (Maj et al., 2003;Erb et al., 2005;Wang et al., 2006). In addition, there is accumulating evidence for CRF-...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.