Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm−2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm−2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.
The paper reports on the processing of chitosan N-doped reduced graphene oxide (CS/N-rGO) nanocomposite membranes prepared by a facile, dispersion-casting procedure aimed as anion exchange membranes in fuel cells. Genipin (GEN) was used as a crosslinking agent to ameliorate mechanical weakens of nanocomposite membranes, while the N-rGO filler, aside of its role as a mechanical enhancer, is expected to improve the ionic conductivity of membranes. The resulting properties of processed membranes in terms of morphology, tensile strength, elasticity, and ethanol permeability were examined. The relevance of the membranes in terms of efficiency and performance was demonstrated in a single cell test.
The presented study focuses on the modification of polypropylene (PP) film with tetraethyl orthosilicate (TEOS) under heterogeneous conditions via polydopamine/polyethylene imine (PDA/PEI) chemistry using a facile dip-coating procedure to attain hydrophilic mineral-rich surfaces. Thus, the resulting PP-based films were further immersed in ion-rich simulated body fluid (SBF) to deposit Ca-based minerals onto the film’s surfaces efficiently. In addition, the chemical reaction mechanism on PP film was proposed, and mineralisation potential inspected by determination of functional groups of deposits, zeta potential, hydrophilicity and surface morphology/topography using Fourier transform infrared (FTIR) spectroscopy, streaming potential, water contact angle (WCA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The obtained results show the improved wettability of samples on account of PDA inclusion (WCA was reduced from 103° for pure PP film to 28° for PDA-modified film), as well as the presence of functional groups, due to the PDA/PEI/TEOS surface functionalisation, increased the ability of minerals to nucleate on the PP film’s surface when it was exposed to an SBF medium. Moreover, the higher surface roughness due to the silica coatings influenced the enhanced anchoring and attachment of calcium phosphate (CaP), revealing the potential of such a facile approach to modify the chemically inert PP films, being of particular interest in different fields, including regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.