We have identified a novel member of the steroid hormone receptor superfamily by cDNA cloning from a human osteosarcoma SAOS-2/B10 cell library. Sequence analysis predicts a protein of 441 amino acids, which includes the conserved amino acid residues characteristic of the DNA- and ligand-binding domains of nuclear receptors. Amino acid sequence alignment and transcriptional activation experiments revealed that the new protein is closely related to the mouse peroxisome proliferator activated receptor. The overall homology is 62%, and the highest similarity is seen in the DNA- and ligand-binding domains, 86% and 71%, respectively. Northern blot analysis showed that in mature rats, the receptor is highly expressed in heart, kidney, and lung as a transcript of approximately 3500 nucleotides. In human cells, the size of the mRNA is approximately 4000 nucleotides. Transcription assays using hybrid receptors consisting of the ligand-binding domain of the new protein and the DNA-binding domain of the glucocorticoid receptor showed weak stimulation by the peroxisome proliferator activator WY14643, suggesting a relationship to that receptor. Similar stimulation was observed with arachidonic and oleic acid (100-250 microM).
Osteoblasts and adipocytes originate from common mesenchymal precursors. With aging, there is a decrease in osteoprogenitor cells that parallels an increase of adipocytes in bone marrow. We observed that rabbit serum (RS) induces adipocyte-like differentiation in human osteosarcoma SaOS-2/B10 and MG-63 cell lines, in rat ROS17/2.8 cells, and in mouse calvaria-derived osteoblastic MB1.8 cells, as evidenced by the accumulation of Oil Red O positive lipid vesicles and the decrease in alkaline phosphatase expression. Both SaOS-2/B10 and MG-63 cells, but not ROS17/2.8 nor MB1.8 cells, express significant levels of PPARgamma mRNA, a member of the peroxisome proliferator activated receptor (PPAR) family that has been implicated in the control of adipocyte differentiation. However, both ROS17/2.8 and MG-63 cells express significant levels of the adipocyte selective marker, aP2 fatty acid binding mRNA, which can be further increased by RS. These cell types express PPARdelta/NUC-1 but not PPARalpha, indicating that cells that do not express either PPARgamma or PPARalpha are capable of differentiating into adipocyte-like cells. Transfection experiments in COS cells showed that compared with fetal bovine serum (FBS), RS is rich in agents that stimulate PPAR-dependent transcription. The stimulatory activity was ethyl acetate extractable and was 35-fold more abundant in RS than in FBS. Purification and analysis revealed that the major components of this extract are free fatty acids. Furthermore, the same fatty acids, a mixture of palmitic, oleic, and linoleic acids, activate the PPARs and induce adipocyte-like differentiation of both ROS17/2.8 and SaOS-2/B10 cells. These findings suggest that fatty acids or their metabolites can initiate the switch from osteoblasts to adipocyte-like cells.
Lymphocytmedted cytotoxicity has been proposed to consist of the polariz secretion of granule-stored performn leading to target-cell lysis. Nevertheless, performindependent pathways were polated to explain the cytolytic activity of apparently perfoin-free lymphocytes and the DNA degradation found in dying target cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.