Intervertebral disc degeneration (IDD) is closely related to changes in the intervertebral disc (IVD) composition and the resulting viscoelastic properties. IDD is a severe condition because it decreases the disc's ability to resist mechanical loads. Our research aims to understand IDD at the cellular level, specifically the changes in the viscoelastic properties of the nucleus pulposus (NP), which are poorly understood. This study employed a system integrating nanoindentation with Raman spectrometry to correlate biomechanics with subtle changes in the biochemical makeup of the NP. The characterization was, in turn, correlated with the degenerative severity of IVD as assessed using magnetic resonance imaging (MRI) of different patients with spinal stenosis, degenerative spondylolisthesis, and degenerative scoliosis. It is shown that there is an increase in the crosslinking ratio in collagen, a reduction in proteoglycan, and a build‐up of minerals upon the rise in the severity level of the disc damage in the NP. Assessment of mechanical characteristics reveals that the increasing disc degeneration makes the NP lose its elasticity, becoming more viscous. This shows that the tissue undergoes abnormalities in weight‐bearing ability, which contributes to spinal instability. The correlation of the individual discs shows that grades III and IV have similarities in the changes of Amide I and III toward the storage modulus. In contrast, grades IV and V correlate with mineralization toward the storage modulus. Reduction of proteoglycan has the highest impact on the changes of the storage modulus in all grades of IDD. Connecting compositional alterations to IVD micromechanics at various degrees of degeneration expands our understanding of tissue behavior and provides critical insight into clinical diagnostics, treatment, and tissue engineering.
A tissue preparation method will inevitably alter the tissue content. This study aims to evaluate how different common sample preparation methods will affect the tissue morphology, biomechanical properties, and chemical composition of samples. The study focuses on intervertebral disc (IVD) tissue; however, it can be applied to other soft tissues. Raman spectroscopy synchronized with nanoindentation instrumentation was employed to investigate the compositional changes of IVD, specifically, nucleus pulposus (NP) and annulus fibrosus (AF), together with their biomechanical properties of IVD. These properties were examined through the following histological specimen types: fresh cryosection (control), fixed cryosection, and paraffin-embedded. The IVD tissue could be located using an optical microscope under three different preparation methods. Paraffin-embedded samples showed the most explicit details where the lamellae structure of AF could be identified. In terms of biomechanical properties, there was no significant difference between the fresh and fixed cryosection ( p > 0.05). In contrast, the fresh cryosection and paraffin-embedded samples showed a significant difference ( p < 0.05). It was also found that the tissue preparations affected the chemical content of the tissues and structure of the tissue, which are expected to contribute to biomechanical properties changes. Fresh cryosection and fixed cryosection samples are more promising to work with for biomechanical assessment in histological tissues. The findings fill essential gaps in the literature by providing valuable insight into the characteristics of IVD at the microscale. This study can also become a reference for a better approach to assessing the mechanical properties and chemical content of soft tissues at the microscale.
The cover image is based on the Research Article Correlation of the degenerative stage of a disc with magnetic resonance imaging, chemical content, and biomechanical properties of the nucleus pulposus by Azril, Kuo‐Yuan Huang et al., https://doi.org/10.1002/jbm.a.37490.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.