Collecting information from previous investigations and expressing it in a scientometrics study can be a priceless guide to getting a complete overview of a specific research area. The aim of this study is to explore the interrelated connection between alginate, gelatine, and hydroxyapatite within the scope of bone tissue and scaffold. A review of traditional literature with data mining procedures using bibliometric analyses was considered to identify the evolution of the selected research area between 2009 and 2019. Bibliometric methods and knowledge visualization technologies were implemented to investigate diverse publications based on the following indicators: year of publication, document type, language, country, institution, author, journal, keyword, and number of citations. An analysis using a bibliometric study found that 7446 papers were located with the keywords “bone tissue” and “scaffold”, and 1767 (alginate), 185 (gelatine), 5658 (hydroxyapatite) papers with those specific sub keywords. The number of publications that relate to “tissue engineering” and bone more than doubled between 2009 (1352) and 2019 (2839). China, the United States and India are the most productive countries, while Sichuan University and the Chinese Academy of Science from China are the most important institutions related to bone tissue scaffold. Materials Science and Engineering C is the most productive journal, followed by the Journal of Biomedical Materials Research Part A. This paper is a starting point, providing the first bibliometric analysis study of bone tissue and scaffold considering alginate, gelatine and hydroxyapatite. A bibliometric analysis would greatly assist in giving a scientific insight to support desired future research work, not only associated with bone tissue engineering applications. It is expected that the analysis of alginate, gelatine and hydroxyapatite in terms of 3D bioprinting, clinical outcomes, scaffold architecture, and the regenerative medicine approach will enhance the research into bone tissue engineering in the near future. Continued studies into these research fields are highly recommended.
This article proposes a simple physical-based model to describe and predict the performance of axially compressed magnetorheological elastomer cylinders used as vibration and shock absorbers. The model describes the magnetorheological elastomer macroscopic stiffness changes because of an externally applied magnetic field from a microscopic composite cell of silicone rubber and carbonyl iron particle. Despite neglecting the material hyperelasticity, anisotropy and adjacent magnetic interaction, the model describes effectively the effect of the magnetic field on the macroscopic modulus of elasticity. The changes in the mechanical properties with the induced magnetic field are measured on samples of different particle concentration based on volume percentage, that is, 10 and 30 percent concentration of iron particles in a silicone rubber matrix. The manufacturing process of the samples is detailed, as well as the experimental validation of the effective stiffness change under a magnetic field in terms of transmissibility and mobility testing. However, the prediction seems to be limited by the linear elastic material model. Predictions and measurements are compared, showing that the model is capable of predicting the tunability of the dynamic/shock absorber and that the proposed devices have a possible application in the reduction of mechanical vibrations.
Public concern towards solidification of fat, oil, and grease (FOG) through disposed wastes into the drainage system is an unresolved issue to this day. The use of skimmer to separate oil and water form their mixture is a less comprehensive solution. This paper aimed to design the concept and fabricate oil-water separation medium, as well as to analyse the effect of different pore sizes of wire mesh and coating respectively. Water separation system is designed based on Pugh Method, while stainless steel wire mesh is used in analysing the water repellent and oil absorption characteristics. Titanium dioxide is used as coating. Surface characterization and contact angle of droplet were observed using scanning electron microscope and contact angle measurement tools. Hydrophobicity of uncoated stainless steel of wire mesh will increase if the pore size of wire mesh is decreasing in size. The more layers of coating increase the hydrophobicity of the wire mesh in increments with contact angle more than 100⁰. For the cooking oil droplet to expeditiously spread over the mesh surface and rapidly permeate through the mesh less than 1 second, showed the oleophilic nature of the mesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.