This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.
This article studies the anisotropic particle dispersion in a continuously forced, two-dimensional turbulent flow on a β-plane. The flow is immersed in a large-scale closed basin with free-slip walls. The anisotropy is analyzed in two sets of numerical experiments characterized by the magnitude of the imposed, time-dependent forcing (weak and strong). Both experiments exhibit typical features of zonostrophic turbulence: eddy motions that, on average, form alternating east–west circulation bands due to the β-effect. The dispersion anisotropy is investigated through three Lagrangian statistics calculated by zonal and meridional components: (i) relative dispersion between pairs of particles; (ii) dispersion ellipses; and (iii) finite-scale Lyapunov exponents (FSLE), also measured with particle pairs. In the experiment with weak forcing, the relative dispersion and dispersion ellipses show anisotropy with a zonal preference toward the west; however, the FSLE did not reveal significant anisotropy. In the experiment with strong forcing, the relative dispersion and dispersion ellipses show zonal anisotropy toward the west when the particles are far from the boundaries. As the particles reach the western wall and are redistributed to fill the domain, the anisotropy ceases. The FSLE show zonal anisotropy for a wide range of particle separations. The results are examined further by using no-slip boundary conditions and a rectangular domain geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.