Topical application of imiquimod (IMQ), a Toll-like receptor (TLR)7 ligand, can induce and exacerbate psoriasis, a chronic inflammatory skin disorder. In a mouse model of IMQ-induced psoriasis-like skin inflammation, T-helper (Th)17 cells and interleukin (IL)-17/IL-22-producing cd-T cells have been shown to play a pivotal role. However, the mechanisms of induction of the Th17 pathway and development of psoriasis-like skin inflammation by IMQ treatment remain unclear. In this study, we investigated pathogenic mechanisms of IMQ-induced psoriasis-like skin inflammation in mice. We first confirmed that, together with an increase in IL-17 and IL-22 production, application of IMQ to mouse skin induced the expression of cytokines required for activation of the Th17 pathway, and proinflammatory mediators involved in the pathology of psoriasis. Analysis of Tlr7 À/À mice demonstrated that most of the in vivo effects of IMQ were mediated via TLR7. In an in vitro study using plasmacytoid dendritic cells (DCs), IMQ induced production of interferon (IFN)-a, IL-23, IL-6 and tumor necrosis factor (TNF)-a. Furthermore, when we analyzed in vitro-generated bone marrow-derived DCs with features similar to TNF-a and inducible nitric oxide synthase (iNOS)-producing DCs, IL-23, IL-6, IL-1b, TNF-a and iNOS/NO production was weakly induced by IMQ alone and further enhanced after co-stimulation with IMQ and IFN-a. These in vitro effects of IMQ were also mediated via TLR7 and the synergistic effect of IMQ, and IFN-a was suggested to be caused by upregulation of TLR7 expression by IFN-a. These results demonstrate part of the mechanism by which the Th17 pathway and psoriasislike skin inflammation are induced by IMQ and IFN-a in a mouse model.
Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) are abundant in tumor tissues. Here, hypothesizing that tumor Tregs would clonally expand after they are activated by tumor-associated antigens to suppress antitumor immune responses, we performed single-cell analysis on tumor Tregs to characterize them by T cell receptor clonotype and gene-expression profiles. We found that multiclonal Tregs present in tumor tissues predominantly expressed the chemokine receptor CCR8. In mice and humans, CCR8+ Tregs constituted 30 to 80% of tumor Tregs in various cancers and less than 10% of Tregs in other tissues, whereas most tumor-infiltrating conventional T cells (Tconvs) were CCR8–. CCR8+ tumor Tregs were highly differentiated and functionally stable. Administration of cell-depleting anti-CCR8 monoclonal antibodies (mAbs) indeed selectively eliminated multiclonal tumor Tregs, leading to cure of established tumors in mice. The treatment resulted in the expansion of CD8+ effector Tconvs, including tumor antigen-specific ones, that were more activated and less exhausted than those induced by PD-1 immune checkpoint blockade. Anti-CCR8 mAb treatment also evoked strong secondary immune responses against the same tumor cell line inoculated several months after tumor eradication, indicating that elimination of tumor-reactive multiclonal Tregs was sufficient to induce memory-type tumor-specific effector Tconvs. Despite induction of such potent tumor immunity, anti-CCR8 mAb treatment elicited minimal autoimmunity in mice, contrasting with systemic Treg depletion, which eradicated tumors but induced severe autoimmune disease. Thus, specific removal of clonally expanding Tregs in tumor tissues for a limited period by cell-depleting anti-CCR8 mAb treatment can generate potent tumor immunity with long-lasting memory and without deleterious autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.