In most rural communities, water is consumed without testing its potability and the major sources of water apart from rainfall are surface and river water; in some cases, borehole water. Water samples from surface, river, well and borehole water in different Communities in Khana Local government area was randomly collected and bacteriological analysis was carried out on them. The results showed that the least microbial load was from that of borehole water which had an average microbial load of 1.78 × 10 3 while river water had the highest microbial load with a mean count of 5.48 × 10 4. Surface water, however, had the highest total coliform (42.6/100 mL) and faecal coliform count (14.8/100 mL) while borehole water had the least total coliform (4.6/100 mL) and faecal coliform (0) count. Isolation and identification of the isolates showed that Bacillus spp was the most isolated with an occurrence of 7 (23.3%). Other organisms isolated included Staphylococcus aureus, Shigella spp, Salmonella spp, Enterobacter spp, Streptococcus spp, Proteus spp and Escherichia coli. Most of these organisms are gram negative microorganisms and are usually associated with gastrointestinal illness. Proper treatment and surveillance of these water sources should therefore be carried out regularly to prevent public health issues that could be implicated from such unwholesome practice of drinking non-potable water
The incidence of antibiotic resistance among bacteria to synthetic drugs is on the increase, as such there is the need for new and safer antimicrobials especially, from natural sources like plants. Leaves of Bryophyllum pinnatum and Aspilia africana are among the many that have been used by rural dwellers as medicines to treat infections. Methanol, hot water and ethanolic extracts of the leaves of Bryophyllum pinnatum and Aspilia africana were obtained and their antimicrobial activity testing against three microorganisms isolated from wound which includes Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results indicated that the methanol extract of both plants had higher antimicrobial activity against the test isolates as compared with their ethanol extracts; while the hot water extracts had no antimicrobial activity against the isolates. Ethanol extracts of both plants showed little antimicrobial activity against the test isolates. S. aureus was more susceptible to methanolic extract of B. pinnatum with a zone of inhibition of 4 mm, E. coli was 3.0 mm while that of P. aeruginosa was 1.0 mm. Susceptibility pattern of the isolates to A. africana showed that P. aeruginosa was more susceptible with a zone of inhibition of 6.0 mm; that of S. aureus was 5.0 mm while that of E. coli was 3.0 mm. This shows that methanolic extracts of Bryophyllum pinnatum and Aspilia africana can be used against pathogenic organisms including Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa which can cause slow healing of wounds.
Background: Rainwater in most developing communities of the globe remains the major source of water for drinking, washing, bathing and cooking purposes but often times; its potability is often not tested and trusted, thus putting the general populace at risk of myriad of water-borne illnesses including those from bacteria, virus, parasite and fungi respectively. However, the growing world population has continued to put the scarcely available water resources at high demand, thus the need to secure the integrity of these very important natural resources cannot be over emphasized given it's critical applications and usage in our everyday life and survival on earth.
The constituents of wastes generated from abattoir activities create conducive environment for microbial proliferation, most of which are pathogenic. Infections caused by these microorganisms could result to zoonoses. This study was to determine the distribution of bacterial isolates and their biomass from different abattoirs in Port Harcourt. Samples like waste blood, table swab, service water, faecal matter, soil and wastewater from abattoirs in Iwofe, Rumuodomaya and Trans-Amadi were collected from October 2017 to November, 2018 and analysed using standard microbiological procedures. Results obtained revealed that the total heterotrophic bacterial count of blood samples ranged from 8.33x101 to 3.33x102 cfu/ml for Trans-Amadi and Iwofe abattoirs, table swabs ranged from 6.74x104 to 4.88x106 cfu/ml, water samples ranged from 1.56x104 to 2.07x104 cfu/ml; faecal matter had THB counts ranging from 9.97x107 to 1.06x108 cfu/g; and soil samples ranged from 1.11x1010 to 1.17x1010 g, while wastewater counts ranged from 1.03x108 to 1.08x108 cfu/ml. The predominant Bacterial isolates were of the genera Micrococcus, Staphylococcus, Serratia, Pseudomonas, Proteus, Klebsiella, Escherichia and Chromobacterium, Serratia sp. only was isolated from Iwofe and Rumuodomaya abattoirs within April to October while Chromobacterium sp. was isolated in Trans-Amadi and Rumuodomaya abattoirs within the months of May to October. Among the isolates, Escherichia coli and Klebsiella species occurred more compared to others in all the three locations. A higher percentage of microorganisms were recorded in the month of May compared to other months. It is presumed that abattoir wastes harbour many microorganisms of public health importance. The occurrence of these microbes, most of which are enteric pathogens, poses a public health challenge as infections by them could result in illnesses such as gastroenteritis, septicaemia and pneumonia especially in the absence of good hygiene around abattoirs. Proper sanitation in abattoirs as well as management of abattoir wastes is important in reducing the spread of these microorganisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.