The modeling of lithium-ion battery is an important element to the management of batteries in industrial applications. Various models have been studied and investigated, ranging from simple to complex. The second-order equivalent circuit model was studied and investigated since the dynamic behavior of the battery is fully characterized. The simulation model was built in Matlab Simulink using the Kirchhoff Laws principle in mathematical equations, while the battery's internal parameters were identified by using the BTS4000 (Battery tester) device. To estimate the full state of charge (SOC), the initial state of charge (SOC0) must be identified or measured. Hence, this paper seeks for the SOC estimation by using experimental terminal voltage data and SOC with Matlab lookup table. Then, the simulated terminal voltage, as well as the SOC of the battery are compared and validated against measured data. The maximum relative error of 0.015 V and 2% for terminal voltage and SOC respectively shows that the proposed model is accurate and relevant based on the error analysis.
The modelling of the supercapacitor (SC) plays an important role for the industrial application with many model representations such as electrical, chemical, and electrochemical models. Among one of those models are the equivalent circuit model which has been used to describe the real-time (charging/discharging) operation characteristics of the SC. Apart of its mathematical complexity, the time-consuming experimentally is also a real challenge for obtaining the internal parameters values for the SC. Choices of test equipment with a structure design of experiment also play important criteria affect the accuracy of the model. This research emphasis on a structured of experimental design for SC modelling by using Neware battery tester. The experimental exercise to attain internal parameters of the SC are described and discussed in the paper. The findings were benchmarked with an empirical model of previous researchers. The terminal voltage of SC was validated via experiment with maximum relative error of 0.045%. The model successfully reproduce the SC dynamic behavior during the charge/discharge phase which indicates the proposed method and model accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.