We established a protocol to construct complete recombinant genomes from their small contiguous DNA pieces and obtained the genomes of mouse mitochondrion and rice chloroplast using a B. subtilis genome (BGM) vector. This method allows the design of any recombinant genomes, valuable not only for fundamental research in systems biology and synthetic biology but also for various applications in the life sciences.
The genome of Bacillus subtilis 168 was modified to yield a genome vector for the cloning of DNA several Mb in size. Unlike contemporary plasmid-based vectors, this 4.2 Mb genome vector requires specific in vivo handling protocols because of its large size. Inversion mutagenesis, a method to modify local genome structure without gain or loss of genes, was applied intensively to the B. subtilis genome; this technique made possible both exchange and translocation of designated regions of the genome. This method not only reshuffles the genome of B. subtilis, but can provide insight into the biologic principles underlying genome plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.