Hyperthermia (HT) treatment is a noninvasive cancer therapy, often used with radiation therapy and chemotherapy. Compared with 37 °C, 42 °C is mild heat stress for cells and produces reactive oxygen species (ROS) from mitochondria. To involve subsequent intracellular accumulation of DOX, we have previously reported that the expression of ATP-binding cassette sub-family G member 2 (ABCG2), an exporter of doxorubicin (DOX), was suppressed by a larger amount of intracellular mitochondrial ROS. We then hypothesized that the additive effect of HT and chemotherapy would be induced by the downregulation of ABCG2 expression via intracellular ROS increase. We used human breast cancer cell lines, MCF-7 and MDA-MB-453, incubated at 37 °C or 42 °C for 1 h to clarify this hypothesis. Intracellular ROS production after HT was detected via electron spin resonance (ESR), and DOX cytotoxicity was calculated. Additionally, ABCG2 expression in whole cells was analyzed using Western blotting. We confirmed that the ESR signal peak with HT became higher than that without HT, indicating that the intracellular ROS level was increased by HT. ABCG2 expression was downregulated by HT, and cells were injured after DOX treatment. DOX cytotoxicity enhancement with HT was considered a result of ABCG2 expression downregulation via the increase of ROS production. HT increased intracellular ROS production and downregulated ABCG2 protein expression, leading to cell damage enhancement via DOX.
Breast cancer is one of the most common types of cancers prevalent in women. Several types of breast cancers can easily metastasize to bone and cause disease complications such as hypercalcemia and pathologic fracture, thus compromising the quality of life of people affected by it. Bisphosphonate drugs are often used for the treatment of bone metastasis to suppress osteoclastic bone resorption. However, bisphosphonate has adverse effects on the gastrointestinal tract and kidneys and also induces osteonecrosis of the jaw. Photodynamic therapy (PDT) is an alternative cancer treatment approach with minimal invasiveness. It is a combination treatment that uses photosensitizers, which accumulate in tumor cells, followed by laser irradiation. We previously reported that the cellular incorporation of 5-aminolevulinic acid (5-ALA), which was a precursor of protoporphyrin IX (PpIX), was regulated by reactive oxygen species derived from mitochondria (mitROS). In this study, we investigated the incorporation of 5-ALA, accumulation of PpIX, and subsequent effects on cell viability after laser irradiation of two different breast cancer cell lines with different metastaticites. The highly metastatic breast cancer cell line 4T1E/M3 showed a significant increase in ROS production after treatment with indomethacin (IND). In addition, IND treatment enhanced the cellular uptake of 5-ALA via PEPT1 upregulation in 4T1E/M3, but not in the non-metastatic cell line. Overall, metastatic breast cancer is likely to be sensitive to ROS and activate signaling pathways associated with 5-ALA transportation, suggesting that ALA-PDT could be an effective treatment with low invasiveness for metastatic breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.