The hexadentate nitrogen ligands 1-isoTQEN ( N,N,N',N'-tetrakis(1-isoquinolylmethyl)ethylenediamine) and 3-isoTQEN ( N,N,N',N'-tetrakis(3-isoquinolylmethyl)ethylenediamine) have been prepared. The structures of these ligands are based on that of TPEN ( N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine). The introduction of a benzene ring into TPEN affords fluorescence ability upon zinc-ion binding. Compared to the quinoline isomer TQEN, isoquinoline derivatives 1-isoTQEN and 3-isoTQEN exhibit a lower-energy shift in the excitation and emission wavelengths and an enhanced fluorescence intensity, probably because of the energy-transfer mechanism between adjacent isoquinoline rings. Importantly, an increase in the Zn (2+)/Cd (2+) discriminating ability and a reduction in the background fluorescence induced by pH were also achieved for isoquinoline derivatives. The zinc-ion-induced fluorescence of these isoTQENs was not quenched by an addition of TPEN, which demonstrates the significantly high zinc-ion binding ability of these isoTQEN ligands.
Several bisquinoline derivatives, N,N'-bis(2-quinolylmethyl)-N,N'-dialkylethylnediamines (alkyl=methyl, ethyl, isopropyl and t-butyl), have been synthesized and their fluorescent responses toward zinc ion were investigated. These compounds exhibit zinc ion-induced fluorescence and their intensities decrease as the alkyl groups become larger. The t-butyl derivative (BQDtBEN) exhibited negligible fluorescence even in the presence of zinc ion. The fluorescence intensity of the zinc complex of the bisquinoline derivative (BQDMEN) is higher than that of TQEN (N,N,N',N'-tetrakis(2-quinolylmethyl)ethylenediamine), indicating that the TQEN-Zn complex has an intramolecular quenching mechanism due to the energy transfer among four quinoline rings and the remaining photoinduced electron transfer (PET) mechanism. Introduction of methoxy substituents into the quinoline ring shifted the excitation and emission wavelengths towards a lower-energy direction and increased the fluorescence intensity, which allows N,N'-bis(6-methoxy-2-quinolylmethyl)-N,N'-dimethylethylenediamine (6-MeOBQDMEN) to be used for cellular fluorescent microscopic analysis (lambdaex=331 nm, lambdaem=406 nm and phi=0.28 for 6-MeOBQDMEN-Zn complex).
Previously, we have reported that 1- and 3-isoTQENs (N,N,N',N'-tetrakis(1- or 3-isoquinolylmethyl)ethylenediamines) exhibit a specific fluorescence enhancement toward zinc ion. In this study, three methoxy-substituted derivatives of 1-isoTQEN were synthesized and their fluorescent response toward zinc ion was studied. The substitution pattern of the methoxy group significantly changes the solubility of compounds in aqueous DMF, λ(max) in the absorption spectra, excitation/emission wavelengths and fluorescence intensity of zinc complexes. In the presence of zinc ion, 7-MeO-1-isoTQEN exhibits higher fluorescence intensity and longer excitation/emission wavelengths (λ(ex) = 342 nm, λ(em) = 526 nm) than 6-MeO-1-isoTQEN (λ(ex) = 303 nm, λ(em) = 469 nm) and 5,6,7-triMeO-1-isoTQEN (λ(ex) = 340 nm, λ(em) = 504 nm). The fluorescence intensity of a zinc complex of 7-MeO-1-isoTQEN (ϕ = 0.122) is four times higher than the parent 1-isoTQEN (ϕ = 0.034) under the same conditions. The crystal structure of 7-MeO-1-isoTQEN-Zn complex reveals that all six nitrogen atoms participate to the metal coordination with ideal octahedral geometry, affording significantly high metal binding affinity comparable with TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine). 7-MeO-1-isoTQEN detects zinc ion concentration change in cells by fluorescence microscopic analysis.
A 6-methoxyquinoline conjugated diethylenetriamine derivative, N,N''-bis(6-methoxy-2-quinolylmethyl)diethylenetriamine (6-MeOBQDIEN) has been synthesized and its fluorescent response toward zinc ion was investigated. In the presence of zinc ion, 6-MeOBQDIEN exhibits fluorescence (λ(ex) = 329 nm, λ(em) = 418 nm, φ = 0.039). The fluorescent intensity of the zinc complex of the compound is two times higher than the parent BQDIEN (φ = 0.021) under the same conditions. The crystal structure of 6-MeOBQDIEN-Zn complex shows that all five nitrogen atoms participate to the metal coordination in a distorted square-pyramidal geometry (τ = 0.145) with the aliphatic nitrogen in an apical position. Fluorescent microscopic analysis using 6-MeOBQDIEN reveals the zinc ion concentration change in living cells.
The quantity of L-malate was determined using apparatus comprised of a reactor with immobilized malate dehydrogenase (MDH) and aspartate aminotransferase (AST) in a flow line. NADH formed by an enzymatic reaction was fluorometrically detected. The optimal concentration of NAD + in the carrier containing 0.1 M glutamate was determined. The maximum peak areas due to NADH were observed at pH 8.0 when the pH of the carrier consisting of Tris buffer ranged from 7.0 to 8.5. Various buffer types were also examined as carrier media at pH 8.0 and Tris buffer showed the maximum peak area. When the carrier composed of Tris buffer (0.1 M, pH 8.0) was used, the calibration curve for malate was linear in the range of 0.05-50 µM (r = 1.000). The detection limit (S/N = 3) was 0.03 µM. Relative standard deviations of the peak area at 1 µM and 10 µM were 1.5% (n = 7) and 0.36% (n = 7), respectively. Thirty samples of malate (10 µM) were analyzed for 1 hr. This method was applied to the analysis of malate in several beverages, and malate content determined by this method agreed with that determined by a commercially available test-kit method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.