Background Bile acids are essential organic molecules synthesized from cholesterol in the liver. They have been utilized as indicators of hepatobiliary impairment because synthesis of BAs and their metabolism are influenced by liver diseases. We aimed to investigate the role of serum bile acid level and composition in differentiation between nonalcoholic fatty liver disease (NAFLD) and chronic viral hepatitis. An ultra-performance liquid chromatography coupled with mass spectrometry assay was used to measure the serum level of 14 bile acids in chronic viral hepatitis and NAFLD patients beside normal healthy control subjects. Results The mean serum levels of 11 out of the 14 bile acids (two primary, six conjugated, and three secondary) were significantly higher in viral hepatitis compared to control. Only 4 bile acids [2 primary, one glycine conjugated (GCDCA), and one secondary (LCA)] had statistically significant increase in their mean serum bile acid level in NAFLD compared to control. Comparing viral hepatitis group against NAFLD group revealed that the mean serum levels of five conjugated and one secondary bile acid (DCA) were significantly higher in viral hepatitis group. Receiver operating characteristic (ROC) curve analysis revealed that LCA had the best diagnostic performance for viral hepatitis followed by TCA and GCDCA. ROC curve for the combined three parameters had better sensitivity and specificity (70.55% and 94.87% respectively). Conclusion BA compositions including primary, secondary, and conjugated ones could differentiate between chronic viral hepatitis and NAFLD patients, and they might be potential distinguishing biomarkers for this purpose.
Background: Metabonomic studies have related bile acids to hepatic impairment, but their role in predicting hepatocellular carcinoma still unclear. The study aimed to examine the feasibility of bile acids in distinguishing hepatocellular carcinoma from post hepatitis C virus-induced liver cirrhosis.Methods: An ultra-performance liquid chromatography coupled with mass spectrometry measured 14 bile acids in patients with noncirrhotic post hepatitis C virus disease (n = 50), cirrhotic post hepatitis C virus disease (n = 50), hepatocellular carcinoma (n = 50), and control group (n = 50).Results: The spectrum of liver disease was associated with a significant increase in many conjugated bile acids. The fold changes in many bile acid concentrations showed a linear trend with hepatocellular carcinoma > cirrhotic disease > noncirrhotic disease > healthy controls (p < 0.05). Receiver operating characteristic curve analysis revealed five conjugated acids TCA, GCA, GUDCA, TCDCA, GCDCA, that discriminated hepatocellular carcinoma from noncirrhotic liver patients (AUC = 0.85–0.96) with a weaker potential to distinguish it from chronic liver cirrhosis (AUC = 0.41–0.64).Conclusion: Serum bile acids are associated primarily with liver cirrhosis with little value in predicting the progress of cirrhotic disease to hepatocellular carcinoma.
Background Bile acids are essential organic molecules synthesized from cholesterol in the liver and regarded as indicators of hepatobiliary impairment; however, their role in the pathogenesis of hepatocellular carcinoma (HCC) is still unclear. The study aimed to examine the feasibility of bile acids in distinguishing HCC from post hepatitis C virus liver cirrhosis. A UPLC/MS was used to measure 14 bile acids in patients with noncirrhotic HCV disease (n = 50), cirrhotic HCV disease (n = 50), hepatocellular carcinoma (n = 50), and control group (n = 50). Results The progression of liver cirrhosis to HCC was associated with a significant increase in serum bile acids compared to the normal or the noncirrhotic HCV disease (p < 0.05). The fold changes in bile acids concentrations showed a trend that HCC > cirrhotic HCV disease > noncirrhotic HCV disease. Four conjugated acids GCA, GCDCA, GUDCA, and TCDCA steadily increased across the different groups. ROC curves analysis revealed that these bile acids discriminated noncirrhotic liver patients from HCC (AUC 0.850–0.963), with a weaker potential to distinguish chronic liver cirrhosis from HCC (AUC 0.414–0.638). Conclusion The level of serum bile acid was associated primarily with liver cirrhosis, with little value in predicting the progress of chronic liver cirrhotic disease into hepatocellular carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.