This paper introduces a new paradigm to assess daylight in buildings called ‘useful daylight illuminance’, or UDI. The UDI paradigm preserves much of the interpretive simplicity of the conventional daylight factor approach. In contrast to daylight factors however, UDI is founded on an annual time-series of absolute values for illuminance predicted under realistic skies generated from standard meteorological datasets. Achieved UDI is defined as the annual occurrence of illuminances across the work plane where all the illuminances are within the range 100-2000 lux. These limits are based on reports of occupant preferences and behaviour in daylit offices with user-operated shading devices. The degree to which UDI is not achieved because illuminances exceed the upper limit is indicative of the potential for occupant discomfort. The relation between achieved UDI and annual energy consumption for lighting is examined.
Citation: MARDALJEVIC, J. and NABIL, A., 2008 glazings are found to provide the greatest energy benefit for those cases at the lower end of the experienced range in total annual vertical irradiation.The effectiveness of widespread deployment across multiple facades for each locale is examined. The likelihood that electrochromic glazing alone can offer sufficient solar protection without recourse to additional shading is assessed using the recently formulated useful daylight illuminance scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.