Electrochemical deprotection of p-methoxybenzyl (PMB) ethers was performed in an undivided electrochemical flow reactor in MeOH solution, leading to the unmasked alcohol and p-methoxybenzaldehyde dimethyl acetal as a byproduct. The electrochemical method removes the need for chemical oxidants, and added electrolyte (BFNEt) can be recovered and reused. The method was applied to 17 substrates with high conversions in a single pass, yields up to 92%, and up to 7.5 g h productivity. The PMB protecting group was also selectively removed in the presence of some other common alcohol protecting groups.
The permanganate-mediated oxidative cyclization of a series of 2-methylenehept-5-eneoates bearing different chiral auxiliaries was investigated, leading to the discovery of trans-2-tritylcyclohexanol (TTC) as a highly effective chiral controller for the formation of the 2,5-substituted THF diol product with high diastereoselectivity (dr ∼97:3). Chiral resolution of (±)-TTC, prepared in one step from cyclohexene oxide, afforded (-)-(1S,2R)-TTC (er >99:1), which was applied to the synthesis of (+)-trans-(2S,5S)-linalool oxide.
A computational study on Pinnick oxidation of aldehydes into carboxylic acids using density functional theory (DFT) calculations has been evaluated with the (SMD)-M06-2X/aug-pVDZ level of theory, leading to an important understanding of the reaction mechanism that agrees with the experimental observations and explaining the substantial role of acid in driving the reaction. The DFT results elucidated that the first reaction step (FRS) proceeds in a manner where chlorous acid reacts with the aldehyde group through a distorted six-membered ring transition state to give a hydroxyallyl chlorite intermediate that undergoes a pericyclic fragmentation to release the carboxylic acid as a second reaction step (SRS).
1
H NMR experiments and simulations showed that hydrogen bonding between carbonyl and
t
-butanol is unlikely to occur. Additionally, it was found that the FRS is a rate-determining and thermoneutral step, whereas SRS is highly exergonic with a low energetic barrier due to the Cl(III) → Cl(II) reduction. Frontier molecular orbital analysis, intrinsic reaction coordinate, molecular dynamics and distortion/interaction analysis further supported the proposed mechanism.
An eco-friendly and efficient method was developed for the preparation of a new series of sulfurcontaining quinolinthiones. Compounds 6a-o were synthesized from 4-methyl-2-thiocoumarin and arylhydrazides using water as a solvent under microwave irradiation. Some noteworthy features of our novel method are its cleanliness, short reaction time and high conversion rate, and the reaction proceeds (profiles) using a simple procedure. All of the prepared compounds were screened for their antibacterial efficacy in vitro using the disc diffusion method against bacterial strains. Compound (6j) showed the greatest potency with a 16 and 19 mm inhibition zone against Klebsiella pneumonia and Staphylococcus aureus, respectively.
A synthesis of N-monodeuteriomethyl-2-substituted piperidines is described. An efficient and readily scalable anodic methoxylation of N-formylpiperidine in an undivided microfluidic electrolysis cell delivers methoxylated piperidine 3, which is a precursor to a N-formyliminium ion and enables C-nucleophiles to be introduced at the 2-position. The isotopically labelled N-deuteriomethyl group is installed using the Eschweiler-Clarke reaction with formic acid-d2 and unlabelled formaldehyde.Monodeuterated N-methyl groups in these molecular systems possess small isotropic proton chemical shift differences important in the investigation of molecules that are able to support long-lived nuclear spin states in solution nuclear magnetic resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.