Gurion University of the Negev Models lie at the heart of the emerging model-driven engineering approach. In order to guarantee precise, consistent, and correct models, there is a need for efficient powerful methods for verifying model correctness. Class diagram is the central language within UML. Its correctness problems involve issues of contradiction, namely the consistency problem, and issues of finite instantiation, namely the finite satisfiability problem.This article analyzes the problem of finite satisfiability of class diagrams with class hierarchy constraints and generalization-set constraints. The article introduces the FiniteSat algorithm for efficient detection of finite satisfiability in such class diagrams, and analyzes its limitations in terms of complex hierarchy structures. FiniteSat is strengthened in two directions. First, an algorithm for identification of the cause for a finite satisfiability problem is introduced. Second, a method for propagation of generalization-set constraints in a class diagram is introduced. The propagation method serves as a preprocessing step that improves FiniteSat performance, and helps developers in clarifying intended constraints. These algorithms are implemented in the FiniteSatUSE tool [BGU Modeling Group 2011b], as part of our ongoing effort for constructing a model-level integrated development environment [BGU Modeling Group 2010a]. ACM Reference Format: Balaban, M. and Maraee, A. 2013. Finite satisfiability of uml class diagrams with constrained class hierarchy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.