The communication and networking field is hungry for machine learning decision-making solutions to replace the traditional model-driven approaches that proved to be not rich enough for seizing the ever-growing complexity and heterogeneity of the modern systems in the field. Traditional machine learning solutions assume the existence of (cloud-based) central entities that are in charge of processing the data. Nonetheless, the difficulty of accessing private data, together with the high cost of transmitting raw data to the central entity gave rise to a decentralized machine learning approach called Federated Learning. The main idea of federated learning is to perform an on-device collaborative training of a single machine learning model without having to share the raw training data with any third-party entity. Although few survey articles on federated learning already exist in the literature, the motivation of this survey stems from three essential observations. The first one is the lack of a fine-grained multi-level classification of the federated learning literature, where the existing surveys base their classification on only one criterion or aspect. The second observation is that the existing surveys focus only on some common challenges, but disregard other essential aspects such as reliable client selection, resource management and training service pricing. The third observation is the lack of explicit and straightforward directives for researchers to help them design future federated learning solutions that overcome the state-of-the-art research gaps. To address these points, we first provide a comprehensive tutorial on federated learning and its associated concepts, technologies and learning approaches. We then survey and highlight the applications and future directions of federated learning in the domain of communication and networking. Thereafter, we design a three-level classification scheme that first categorizes the federated learning literature based on the high-level challenge that they tackle. Then, we classify each high-level challenge into a set of specific low-level challenges to foster a better understanding of the topic. Finally, we provide, within each low-level challenge, a fine-grained classification based on the technique used to address this particular challenge. For each category of high-level challenges, we provide a set of desirable criteria and future research directions that are aimed to help the research community design innovative and efficient future solutions. To the best of our knowledge, our survey is the most comprehensive in terms of challenges and techniques it covers and the most fine-grained in terms of the multi-level classification scheme it presents.
News creation and consumption has been changing since the advent of social media. An estimated 2.95 billion people in 2019 used social media worldwide. The widespread of the Coronavirus COVID-19 resulted with a tsunami of social media. Most platforms were used to transmit relevant news, guidelines and precautions to people. According to WHO, uncontrolled conspiracy theories and propaganda are spreading faster than the COVID-19 pandemic itself, creating an infodemic and thus causing psychological panic, misleading medical advises, and economic disruption. Accordingly, discussions have been initiated with the objective of moderating all COVID-19's communications, except those initiated from trusted sources such as the WHO and authorized governmental entities. This article presents a large-scale study based on data mined from Twitter. Extensive analysis has been performed on approximately one million COVID-19 related tweets collected over a period of two months. Furthermore, the profiles of 288,000 users were analyzed including unique users' profiles, meta-data and tweets' context. The study noted various interesting conclusions including the critical impact in term of reach level of the (1) exploitation of the COVID-19 crisis to redirect readers to irrelevant topics and (2) widespread of unauthentic medical precautions and information. Further data analysis revealed the importance of using social networks in a global pandemic crisis by relying on credible users with variety of occupations, content developers and influencers in specific fields. In this context, several insights and findings have been provided while elaborating computing and non-computing implications and research directions for potential solutions and social networks management strategies during crisis periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.