BackgroundExtensive spread of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in the United States, and the concomitant increase in severe invasive staphylococcal infections, including osteomyelitis, in healthy children, has led to renewed interest in Panton-Valentine leukocidin (PVL). However, the pathogenetic role of PVL in staphylococcal infections remains controversial, possibly because it depends on the site of infection.Methodology/Principal FindingsWe compared the course of experimental rabbit osteomyelitis due to the PVL-positive CA-MRSA strain USA 300 (LAC) and its PVL-negative isogenic derivative (LACΔpvl), using a low and a high inoculum (8×105 and 4×108 CFU). With the low inoculum, bone infection was less frequent on day 7 (D7) and day 28 (D28) with LACΔpvl than with LAC (respectively 12/19 and 18/19 animals, p = 0.042). With the high inoculum of both strains, all the animals were infected on D7 and the infection persisted on D28 in almost every case. However, tibial bacterial counts and the serum CRP concentration fell significantly between D7 and D28 with LACΔpvl but not with LAC. Respectively 67% and 60% of LAC-infected rabbits had bone deformation and muscle/joint involvement on D7, compared to 0% and 7% of LACΔpvl-infected rabbits (p = 0.001 and p = 0.005 respectively). Between D0 and D28, the anti-PVL antibody titer increased significantly only with the high inoculum of LAC.Conclusions/SignificancePVL appears to play a role in the persistence and rapid local extension of rabbit osteomyelitis, in keeping with the greater severity of human bone infections due to PVL-positive S. aureus. The possible therapeutic implications of these findings are discussed.
Daptomycin is an attractive option for treating prosthetic joint infection, but the 6-mg/kg of body weight/day dose was linked to clinical failure and emergence of resistance. Using a methicillin-resistant Staphylococcus aureus (MRSA) knee prosthesis infection in rabbits, we studied the efficacies of high-dose daptomycin ( d.). After partial knee replacement with a silicone implant, 107 MRSA CFU was injected into the knees. Treatment started 7 days postinoculation and lasted 7 days. Positive cultures were screened for the emergence of mutant strains, defined as having 3-fold-increased MICs. Although in vivo mean log 10 CFU/g of daptomycintreated (4.23 ؎ 1.44; n ؍ 12) or vancomycin-treated (4.63 ؎ 1.08; n ؍ 12) crushed bone was significantly lower than that of controls (5.93 ؎ 1.15; n ؍ 9) (P < 0.01), neither treatment sterilized bone (2/12 and 0/12 rabbits with sterile bone, respectively). Daptomycin mutant strains were found in 6/12, 3/12, and 2/9 daptomycintreated, vancomycin-treated, and control rabbits, respectively; no resistant strains emerged (MIC was always <1 mg/liter). Adjunctive rifampin with daptomycin (1.47 ؎ 0.04 CFU/g of bone [detection threshold]; 11/11 sterile bones) or vancomycin (1.5 ؎ 0.12 CFU/g of bone; 6/8 sterile bones) was significantly more effective than monotherapy (P < 0.01) and prevented the emergence of daptomycin mutant strains. In this MRSA joint prosthesis infection model, combining rifampin with daptomycin was highly effective. Daptomycin mutant strains were isolated in vivo even without treatment, but adjunctive rifampin prevented this phenomenon, previously found after monotherapy in humans.
BackgroundPrevious studies of both clinically-derived and in vitro passage-derived daptomycin–resistant (DAP-R) Staphylococcus aureus strains demonstrated the coincident emergence of increased DAP MICs and resistance to host defense cationic peptides (HDP-R).MethodsIn the present investigation, we studied a parental DAP-susceptible (DAP-S) methicillin-resistant Staphylococcus aureus (MRSA) strain and three isogenic variants with increased DAP MICs which were isolated from both DAP-treated and DAP-untreated rabbits with prosthetic joint infections. These strains were compared for: in vitro susceptibility to distinct HDPs differing in size, structure, and origin; i.e.; thrombin-induced platelet microbicidal proteins [tPMPs] and human neutrophil peptide-1 [hNP-1]; cell membrane (CM) phospholipid and fatty acid content; CM order; envelope surface charge; cell wall thickness; and mprF single nucleotide polymorphisms (SNPs) and expression profiles.ResultsIn comparison with the parental strain, both DAP-exposed and DAP-naive strains exhibited: (i) significantly reduced susceptibility to each HDP (P<0.05); (ii) thicker cell walls (P<0.05); (iii) increased synthesis of CM lysyl-phosphatidylglycerol (L-PG); (iv) reduced content of CM phosphatidylglycerol (PG); and (v) SNPs within the mprF locus No significant differences were observed between parental or variant strains in outer CM content of L-PG, CM fluidity, CM fatty acid contents, surface charge, mprF expression profiles or MprF protein content. An isolate which underwent identical in vivo passage, but without evolving increased DAP MICs, retained parental phenotypes and genotype.ConclusionsThese results suggest: i) DAP MIC increases may occur in the absence of DAP exposures in vivo and may be triggered by organism exposure to endogenous HDPs: and ii) gain-in-function SNPs in mprF may contribute to such HDP-DAP cross-resistance phenotypes, although the mechanism of this relationship remains to be defined.
We investigated the activity of LY333328 alone and combined with gentamicin, both in vitro and in a rabbit model of experimental endocarditis, against the susceptible strain Enterococcus faecalis JH2-2 and its two glycopeptide-resistant transconjugants, BM4316 (VanA) and BM4275 (VanB). MICs of LY333328 and gentamicin were 2 and 16 g/ml, respectively, for the three strains. In vitro, LY333328 alone was bactericidal at 24 h against JH2-2 at a concentration of 2 g/ml and against BM4316 and BM4275 at a concentration of 30 g/ml. The combination of LY333328 and gentamicin (4 g/ml) was synergistic and bactericidal after 24 h of incubation against the three strains at LY333328 concentrations of 2 g/ml for JH2-2 and 8 g/ml for BM4275 and BM4316. The combination of LY333328 and gentamicin was the only regimen demonstrating in vitro bactericidal activity against BM4316. In vivo, intravenous treatment with LY333328 alone, providing peak and trough serum levels of 83.3 ؎ 1.3 and 3.8 ؎ 0.2 g/ml, respectively, was inactive against BM4316 and BM4275 and selected mutants resistant to LY333328 in half of the rabbits infected with the VanA-type strain (MICs, 8 to 20 g/ml). However, the LY333328-gentamicin combination was active against the three strains and prevented the emergence of mutants resistant to both components of the combination. We conclude that the LY333328-gentamicin combination might be of interest for the treatment of enterococcal infections, particularly against VanA-type strains.In recent years, enterococci have become significant nosocomial pathogens and now represent the second leading cause of nosocomial infections in the United States (17). A major reason for their spread in the hospital environment is their ability to resist most of the available antibiotics, including -lactams, aminoglycosides, and glycopeptides, through intrinsic and/or acquired mechanisms of resistance (14, 21). Vancomycin-resistant enterococci have emerged since 1989 and have rapidly increased, being responsible for severe hospital outbreaks (4,11,21). In 1998, almost 15% of enterococci isolated in intensive care units in the United States exhibited vancomycin resistance (13). The lack of uniformly effective antimicrobial therapy for patients infected with glycopeptide-resistant enterococci has led to new therapeutic proposals.LY333328 is a semisynthetic carbohydrate-modified glycopeptide derivative that interacts directly with bacterial proteins involved in the transglycosylation step of cell wall biosynthesis. LY333328 has demonstrated excellent in vitro concentrationdependent activity against vancomycin-susceptible and -resistant enterococci (16,18,23). We previously showed that the activity of intramuscular (i.m.) LY333328 against experimental Enterococcus faecalis endocarditis was limited compared to that observed in vitro (16). This discrepancy could be explained, in part, by insufficient serum LY333328 concentrations achieved with the i.m. route. In order to investigate whether serum levels were the major factor limiting the in vi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.