Current treatment with tissue painogen activator (tPA) requires an Intravenous infusion (1.5-3 h) became the clearance of tPA from the circulation is rapid (t1/2 6 min).
SummarySite directed mutagenesis was used to construct a t-PA variant that contains an additional glycosylation site in the first kringle domain (T103N) combined with a tetra-alanine substitution in the protease domain (KHRR 296-299 AAAA). This combination variant has a plasma clearance rate that is 4.5-fold slower in rats and 5.4-fold slower in rabbits than t-PA. It is also less than one tenth as active as t-PA towards plasminogen in the presence of fibrinogen, and has approximately twice the normal activity in the presence of fibrin. It shows substantial resistance to the fast acting inhibitor, plasminogen activator inhibitor-1 (PAI-1), requiring a 10-fold greater molar excess of PAI-1 to reduce its activity by 50%, compared to t-PA. This is the result of a reduction of nearly 100-fold in the second order rate constant for PAI-1 inactivation. These results show that it is possible to combine mutations in different domains of t-PA to construct a variant which is simultaneously slower clearing, less reactive towards plasminogen in the absence of a fibrin clot, and resistant to inactivation by PAI-1.
Background and PurposeWe compared the activity of a new long-half-life, fibrin-specific tissue-type plasminogen activator (TPA) variant with that of wild-type TPA in rabbit models of embolic stroke and peripheral bleeding.Methods In the embolic stroke model, TPA-induced clot lysis is followed by continuous monitoring of a radiolabeled clot lodged in the middle cerebral artery. Twenty-four hours after embolization and treatment with either thrombolytic agent or excipient, the brains are removed, fixed, and evaluated for cerebral hemorrhage. In a parallel template bleeding time experiment, the effects of equipotent doses of the two TPA molecules were measured.Results Infusion of wild-type TPA or bolus administration of the TPA variant resulted in dose-dependent clot lysis. The TPA variant was found to be an order of magnitude more
This study used two mutants of tissue-type plasminogen activator (t-PA) with resistance to inhibitors of fibrinolysis to define the contribution of plasminogen activator inhibitor (PAI)-1 and alpha2-antiplasmin (alpha2-AP) to the control of fibrin lysis. Wild-type t-PA was compared with KHRR296-299AAAA, which is resistant to PAI-1, and with A473S, which is resistant to alpha2-AP. We examined these forms of t-PA in model systems that are physiologically relevant. Neutralization of alpha2-AP was essential for lysis of plasma clots, irrespective of their platelet content, by either wild-type t-PA or KHRR296-299AAAA. In marked contrast, A473S lysed plasma clots without neutralization of alpha2-AP. Model thrombi, with structures similar to in vivo thrombi, were lysed slowly by wild-type t-PA; the rate and extent of lysis were enhanced by the addition of antibodies to alpha2-AP or PAI-1. A473S was more effective than wild-type t-PA without the addition of antibodies by virtue of its resistance to alpha2-AP. This resistance was remarkable, in that no complex formed between A473S t-PA and alpha2-AP, even after extended incubation, when 50% of wild-type t-PA could be converted to complex. Comparison of A473S and KHRR296-299AAAA mutants showed their similar effectiveness in lysis of platelet-rich model thrombi. Thus, PAI-1 and alpha2-AP contribute approximately equally to the inhibition of thrombus lysis. This study underlines the functional significance of alpha2-AP as a direct inhibitor of t-PA and further explains the basis of the accepted role of alpha2-AP as a regulator of fibrin persistence and thrombus resistance to lysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.