We elaborate on the role of quantum statistics in twisted Poincaré invariant theories. It is shown that, in order to have twisted Poincaré group as the symmetry of a quantum theory, statistics must be twisted. It is also confirmed that the removal of UV-IR mixing (in the absence of gauge fields) in such theories is a natural consequence.
Recent work [1,2] indicates an approach to the formulation of diffeomorphism invariant quantum field theories (qft's) on the Groenewold-Moyal (GM) plane. In this approach to the qft's, statistics gets twisted and the S-matrix in the non-gauge qft's become independent of the noncommutativity parameter θ µν . Here we show that the noncommutative algebra has a commutative spacetime algebra as a substructure: the Poincaré, diffeomorphism and gauge groups are based on this algebra in the twisted approach as is known already from the earlier work of [1]. It is natural to base covariant derivatives for gauge and gravity fields as well on this algebra. Such an approach will in particular introduce no additional gauge fields as compared to the commutative case and also enable us to treat any gauge group (and not just U (N )). Then classical gravity and gauge sectors are the same as those for θ µν = 0, but their interactions with matter fields are sensitive to θ µν . We construct quantum noncommutative gauge theories (for arbitrary gauge groups) by requiring consistency of twisted statistics and gauge invariance. In a subsequent paper (whose results are summarized here), the locality and Lorentz invariance properties of the S-matrices of these theories will be analyzed, and new non-trivial effects coming from noncommutativity will be elaborated. This paper contains further developments of [3] and a new formulation based on its approach.
Modern cosmology has now emerged as a testing ground for theories beyond the standard model of particle physics. In this paper, we consider quantum fluctuations of the inflaton scalar field on certain noncommutative spacetimes and look for noncommutative corrections in the cosmic microwave background (CMB) radiation. Inhomogeneities in the distribution of large scale structure and anisotropies in the CMB radiation can carry traces of noncommutativity of the early universe.We show that its power spectrum becomes direction-dependent when spacetime is noncommutative.(The effects due to noncommutativity can be observed experimentally in the distribution of large scale structure of matter as well.) Furthermore, we have shown that the probability distribution determining the temperature fluctuations is not Gaussian for noncommutative spacetimes. *
We try to constrain the noncommutativity length scale of the theoretical model given in [1] using the observational data from ACBAR, CBI and five year WMAP. The noncommutativity parameter is not constrained by WMAP data, however ACBAR and CBI data restrict the lower bound of its energy scale to be around 10 TeV. We also derive an expression for the amount of non-causality coming from spacetime noncommutativity for the fields of primordial scalar perturbations that are space-like separated. The amount of causality violation for these field fluctuations are direction dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.