Cardiac mapping--recording cardiac activity during electrophysiological testing--has evolved into an indispensable tool in studying the cardiac excitation process, analysing activation patterns, and identifying arrhythmogenic tissue. Cardiac mapping is a broad term that is used here to encompass applications that record electrical or mechanical activity of the heart or both. In recent years, simultaneous and sequential electrical mapping methods have been combined with direct mechanical measurements or imaging techniques to acquire information regarding both the electrical and mechanical activity of the heart (electromechanical mapping) during normal and irregular cardiac behavior. This paper reviews the emerging area of electromechanical mapping from the point of view of the applicable technology, including its history and application.
While there is extensive mapping of the spread of electrical activity in the heart, there have been no measurements of electrical and localized mechanical, or contractile, activity. Yet the development of effective treatments for diseases like chronic heart failure and cardiac hypertrophy depend on the ability to quantify improvements in electrocontractile function. In this paper, we present a sensor that is capable of making simultaneous, electrocontractile measurements. Its small size facilitates placement in multiple myocardial sites for multichannel studies. Semiconductor strain gages are used for force sensing, and Ag/AgCl-plated tungsten electrodes act as electrogram sensors. The sensor contains electronics on-board, including instrumentation amplifiers and a microprocessor for data sampling and analog-to-digital conversion. Each sensor can accurately detect 0-245+/-5 mV in two electrogram channels with a sensitivity of 0.96+/-0.2 mV/step and less than 2% error, and 0-144+/-29 g of contractile force with a sensitivity of 0.56+/-0.11 g/step in the analog-to-digital conversion and less than 6% error. The sensor has been tested in vivo in open-chest rabbit and pig mapping studies. These studies indicated that the average peak-to-peak contractile force at the apex is smaller in the rabbit than the pig (13.3 versus 40.3 g), that the average peak-to-peak contractile force in the pig is smaller near the base than near the apex (31.3 versus 40.3 g), and that contractile force is visibly decreased during ventricular fibrillation compared to normal sinus rhythm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.