Abstract-We present some general techniques for constructing full-rank, minimal-delay, rate at least one space-time block codes (STBCs) over a variety of signal sets for arbitrary number of transmit antennas using commutative division algebras (field extensions) as well as using noncommutative division algebras of the rational field embedded in matrix rings. The first half of the paper deals with constructions using field extensions of . Working with cyclotomic field extensions, we construct several families of STBCs over a wide range of signal sets that are of full rank, minimal delay, and rate at least one appropriate for any number of transmit antennas. We study the coding gain and capacity of these codes. Using transcendental extensions we construct arbitrary rate codes that are full rank for arbitrary number of antennas. We also present a method of constructing STBCs using noncyclotomic field extensions. In the later half of the paper, we discuss two ways of embedding noncommutative division algebras into matrices: left regular representation, and representation over maximal cyclic subfields. The 4 4 real orthogonal design is obtained by the left regular representation of quaternions. Alamouti's code is just a special case of the construction using representation over maximal cyclic subfields and we observe certain algebraic uniqueness characteristics of it. Also, we discuss a general principle for constructing cyclic division algebras using the th root of a transcendental element and study the capacity of the STBCs obtained from this construction. Another family of cyclic division algebras discovered by Brauer is discussed and several examples of STBCs derived from each of these constructions are presented.
Abstract-Perfect space-time codes were first introduced by Oggier et. al. to be the space-time codes that have full rate, full diversity-gain, non-vanishing determinant for increasing spectral efficiency, uniform average transmitted energy per antenna and good shaping of the constellation. These defining conditions jointly correspond to optimality with respect to the Zheng-Tse D-MG tradeoff, independent of channel statistics, as well as to near optimality in maximizing mutual information. All the above traits endow the code with error performance that is currently unmatched. Yet perfect space-time codes have been constructed only for 2, 3, 4 and 6 transmit antennas. We construct minimum and non-minimum delay perfect codes for all channel dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.