[1] Here we describe new techniques for creating river-dominated (birds foot) deltas with strong channelization in the laboratory. The key to achieving strong self-channelization is the addition of a commercially available polymer to the sediment mixture. This polymer enhances the substrate strength increasing the critical erosion stress, an important geomorphic threshold. More importantly it increases the rate of cohesion onset to account for increased rates of morphodynamic evolution in small-scale experiments. A cyclic pattern of delta evolution is observed. The delta ''avulsion cycle'' begins with channel avulsion, erosion, and channel elongation and ends with channel backfilling and abandonment. This cycle appears to be universal but is subject to a range of controls, including sediment size distribution, sediment concentration, substrate cohesiveness, and Froude number. We propose that the observed depositional cycle is characteristic of an avulsion mechanism that is more complex than current models of fluvial systems, which generally explain avulsion probability as an upstream effect dependent on channel superelevation or levee slope. The experiments suggest that in many distributary channel systems, including deltas, alluvial, and deep water fans, downstream mediated topographic effects or ''morphodynamic backwater effects'' may dominate over upstream avulsion processes and control the surface mechanics and stratigraphy. The experimental observations are synthesized into a new depositional model for river-dominated deltas which emphasizes the importance of self-organization and feedback in delta surface evolution and stratigraphy.
Our understanding of sedimentation in alluvial basins is best for very short and very long time‐scales (those of bedforms to bars and basinwide deposition, respectively). Between these end members, the intermediate time‐scales of stratigraphic assembly are especially hard to constrain with field data. We address these ‘mesoscale’ fluvial dynamics with data from an experimental alluvial system in a basin with a subsiding floor. Observations of experimental deposition over a range of time‐scales illustrate two important properties of alluvial systems. First, ephemeral flows are disproportionately important in basin filling. Lack of correlation between flow occupation and sedimentation indicates that channelized flows serve mainly as conduits for sediment, while most deposition occurs via short‐lived unchannelized flow events. Second, there is a characteristic time required for individual depositional events to average to basin‐scale stratal patterns. This time can be scaled in terms of the time required for a single channel‐depth of aggradation, and in this form is constant through a four‐fold variation of experimental subsidence rate.
[1] Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.
[1] Alluvial river channels are intrinsically mobile. We mapped channel planform extent in a series of experiments to measure instantaneous rates of channel motion, loss of planform overlap with the original positions of the channels, and reworking of the fluvial surface over which the channels moved. These experiments comprise two aggrading deltas, one subsiding delta that underwent cyclical base level changes, and one braided channel system that was seeded with vegetation. We find that the amounts of channel planform overlap and remaining unreworked fluvial surface area both decay exponentially with time, and that these metrics and the instantaneously-measured rates of channel motion scale predictably with one another in spite of the different time scales of the processes they record. Rates of channel planform change increase with increasing sediment flux and bed and planform irregularity, and decrease with the establishment of riparian vegetation. Aggradation does not noticeably affect channel mobility, but induces avulsions that allow the channels to more rapidly rework the fluvial surface. Additional findings include that: (1) sediment flux in the braided experiment equals its rate of bar migration, (2) channel widths are normally distributed with time, and (3) we can use our channel mobility metrics to connect surface processes with the resultant fluvial stratigraphy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.