[1] The Indo-Gangetic Plain (IGP) encompasses a vast area, (accounting for $21% of the land area of India), which is densely populated (accommodating $40% of the Indian population). Highly growing economy and population over this region results in a wide range of anthropogenic activities. A large number of thermal power plants (most of them coal fed) are clustered along this region. Despite its importance, detailed investigation of aerosols over this region is sparse. During an intense field campaign of winter 2004, extensive aerosol and atmospheric boundary layer measurements were made from three locations: Kharagpur (KGP), Allahabad (ALB), and Kanpur (KNP), within the IGP. These data are used (1) to understand the regional features of aerosols and BC over the IGP and their interdependencies, (2) to compare it with features at locations lying at far away from the IGP where the conditions are totally different, (3) to delineate the effects of mesoscale processes associated with changes in the local atmospheric boundary layer (ABL), (4) to investigate the effects of long-range transport or moving weather phenomena in modulating the aerosol properties as well as the ABL characteristics, and (5) to examine the changes as the season changes over to spring and summer. Our investigations have revealed very high concentrations of aerosols along the IGP, the average mass concentrations (M T ) of total aerosols being in the range 260 to 300 mg m À3 and BC mass concentrations (M B ) in the range 20 to 30 mg m À3 (both $5 to 8 times higher than the values observed at off-IGP stations) during December 2004. Despite, BC constituted about 10% to the total aerosol mass concentration, a value quite comparable to those observed elsewhere over India for this season. The dynamics of the local atmospheric boundary layer (ABL) as well as changes in local emissions strongly influence the diurnal variations of M T and M B , both being inversely correlated with the mixed layer height (Z i ) and the ventilation coefficient (V c ). The share of BC to total aerosols is highest ($12%) during early night and lowest ($4%) in the early morning hours. While an increase in the V c results in a reduction in the concentration almost simultaneously, an increase in Z imax has its most impact on the concentration after $1 day. Accumulation mode aerosols contributed $90% to the aerosol concentration at ALB, $77 % at KGP and 74% at KNP. The BC mass mixing ratio was $10% over all three locations and is comparable to the value reported for Trivandrum, a tropical coastal location in southern India. This indicates presence of submicron aerosols species other than BC (such as sulfate) over KGP and KNP. A cross-correlation analysis showed that the changes in M B at KGP is significantly correlated with those at KNP, located $850 km upwind, and ALB after a delay of $7 days, while no such delay was seen between ALB and KNP. Back trajectory analyses show an enhancement in M B associated with trajectories arriving from west, the farther from to the west they arr...
Recent research has reported that the tropical easterly jet stream (TEJ) of the boreal summer monsoon season is weakening. The analysis herein using 60 yr ) of data reveals that this weakening of the TEJ is due to the decreasing trend in the upper tropospheric meridional temperature gradient over the area covered by the TEJ. During this period, the upper troposphere over the equatorial Indian Ocean has warmed due to enhanced deep moist convection associated with the rapid warming of the equatorial Indian Ocean. At the same time, a cooling of the upper troposphere has taken place over the Northern Hemisphere subtropics including the Tibetan anticyclone. The simultaneous cooling of the subtropics and the equatorial heating has caused a decrease in the upper tropospheric meridional thermal gradient. The consequent reduction in the strength of the easterly thermal wind has resulted in the weakening of the TEJ.
The Indo-Pacific Ocean (i.e. region between 30°E and 150°E) has been experiencing a warming since the 1950s. At the same time, the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study, we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related to the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951–2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes to modulate the western Pacific-Indian Ocean Walker circulation. At the same time, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Contrary to previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian Sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and this has been contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats
ABSTRACT:The recent Indian Ocean (IO) warming and its relation with the El Niño Southern Oscillation (ENSO) is investigated using available ocean and atmospheric reanalyses. By comparing the events before and after 1976 (identified as a threshold separating earlier and recent decades with respect to global warming trends), our results indicate that the IO had experienced a distinct change in the warming pattern. After 1976, during the boreal summer season the cold anomalies in the IO were replaced by warm anomalies in both warm (El Niño) and cold (La Niña) ENSO events. Strong sinking by upper level winds and the associated anomalous equatorial easterly winds created favourable conditions for the IO warming from 90 ∘ E towards the western IO. Our study highlights that after 1976, atmospheric and oceanic fields changed mostly during La Niña, with both ENSO phases contributing to the warming of the IO. Warm anomalies of 0.2 ∘ C are seen over large areas of the IO in the post-1976 La Niña composites. Our analysis suggests that the IO warming during La Niña events after 1976 may have a relation to the warm anomalies persisting from the preceding strong El Niño events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.