BackgroundSeptic patients treated in the intensive care unit (ICU) often develop multiple organ failure including persistent skeletal muscle dysfunction which results in the patient's protracted recovery process. We have demonstrated that muscle mitochondrial enzyme activities are impaired in septic ICU patients impairing cellular energy balance, which will interfere with muscle function and metabolism. Here we use detailed phenotyping and genomics to elucidate mechanisms leading to these impairments and the molecular consequences.Methodology/Principal FindingsUtilising biopsy material from seventeen patients and ten age-matched controls we demonstrate that neither mitochondrial in vivo protein synthesis nor expression of mitochondrial genes are compromised. Indeed, there was partial activation of the mitochondrial biogenesis pathway involving NRF2α/GABP and its target genes TFAM, TFB1M and TFB2M yet clearly this failed to maintain mitochondrial function. We therefore utilised transcript profiling and pathway analysis of ICU patient skeletal muscle to generate insight into the molecular defects driving loss of muscle function and metabolic homeostasis. Gene ontology analysis of Affymetrix analysis demonstrated substantial loss of muscle specific genes, a global oxidative stress response related to most probably cytokine signalling, altered insulin related signalling and a substantial overlap between patients and muscle wasting/inflammatory animal models. MicroRNA 21 processing appeared defective suggesting that post-transcriptional protein synthesis regulation is altered by disruption of tissue microRNA expression. Finally, we were able to demonstrate that the phenotype of skeletal muscle in ICU patients is not merely one of inactivity, it appears to be an actively remodelling tissue, influenced by several mediators, all of which may be open to manipulation with the aim to improve clinical outcome.Conclusions/SignificanceThis first combined protein and transcriptome based analysis of human skeletal muscle obtained from septic patients demonstrated that losses of mitochondria and muscle mass are accompanied by sustained protein synthesis (anabolic process) while dysregulation of transcription programmes appears to fail to compensate for increased damage and proteolysis. Our analysis identified both validated and novel clinically tractable targets to manipulate these failing processes and pursuit of these could lead to new potential treatments.
In vivo studies have reported conflicting effects of insulin on mixed tissue protein synthesis rates. To test the hypothesis that insulin has differential effects on synthesis rates of various protein fractions in different organs, we infused miniature swine (n ؍ 8 per group) with saline, insulin alone (at 0.7 mU/kg ؊1 ⅐ min ؊1 ), or insulin plus an amino acid mixture for 8 h. Fractional synthesis rate (FSR) of mitochondrial and cytoplasmic proteins in liver, heart, and skeletal muscle, as well as myosin heavy chain (MHC) in muscle, were measured using L-[1-13 C]leucine as a tracer. The FSR of mitochondrial and cytoplasmic proteins were highest in liver, followed by heart and then muscle. Mitochondrial FSR in muscle was higher during insulin and insulin plus amino acid infusions than during saline. Insulin had no significant effect on FSR of MHC in muscle. In contrast, FSR of both mitochondrial and cytoplasmic proteins were not stimulated by insulin in liver. Insulin also did not increase FSR of mitochondrial in heart, whereas insulin and amino acid stimulated FSR of cytoplasmic protein. In conclusion, insulin stimulates the synthesis of muscle mitochondrial proteins, with no significant stimulatory effect on synthesis of sarcoplasmic and MHC. These results demonstrate that insulin has different effects on synthesis rates of specific protein fractions in the liver, heart, and skeletal muscle. Diabetes
Patients with sepsis in the ICU (intensive care unit) are characterized by skeletal muscle wasting. This leads to muscle dysfunction that also influences the respiratory capacity, resulting in prolonged mechanical ventilation. Catabolic conditions are associated with a general activation of the ubiquitin-proteasome pathway in skeletal muscle. The aim of the present study was to measure the proteasome proteolytic activity in both respiratory and leg muscles from ICU patients with sepsis and, in addition, to assess the variation of proteasome activity between individuals and between duplicate leg muscle biopsy specimens. When compared with a control group (n=10), patients with sepsis (n=10) had a 30% (P<0.05) and 45% (P<0.05) higher proteasome activity in the respiratory and leg muscles respectively. In a second experiment, ICU patients with sepsis (n=17) had a 55% (P<0.01) higher proteasome activity in the leg muscle compared with a control group (n=10). The inter-individual scatter of proteasome activity was larger between the patients with sepsis than the controls. We also observed a substantial intra-individual difference in activity between duplicate biopsies in several of the subjects. In conclusion, the proteolytic activity of the proteasome was higher in skeletal muscle from patients with sepsis and multiple organ failure compared with healthy controls. It was shown for the first time that respiratory and leg muscles were affected similarly. Furthermore, the variation in proteasome activity between individuals was more pronounced in the ICU patients for both muscle types, whereas the intra-individual variation between biopsies was similar for ICU patients and controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.