Bisphenol A (BPA) is theoretically synthesized with 2 moles of phenol and 1 mol of acetone. During the reaction, a stoichiometric ratio or high acetone concentration causes the formation of by-products. This situation has been confirmed by density functional theory (DFT) calculations in addition to the literature information. In these calculations, the B3LYP method and the 6-311++G(d, p) basis set were used. DFT calculations show that by-products can be formed in the synthesis of bisphenol a. The common method used to solve this problem is to work with high molar phenol/acetone ratios. But this brings additional operating and investment costs. In this study, semi-batch reaction experiments were performed which stoichiometric acetone was fed in reactor with various pulsed modes in the presence of homogenous and heterogonous catalysts. As a result, it has been shown that high conversion and selectivity can be achieved by providing energy efficiency
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.