The understanding of innate immune modulation by pathogens and immune-modulating agents, including synthetic oligodeoxynucleotides (CpG ODNs), has offered several new approaches to improve prophylactic and therapeutic strategies against infectious diseases in humans and animals. However, in this regard not much work has been done in avian medicine. In the present study, we analyzed the kinetics of interferon (IFN), cytokine, and chemokine mRNA expression in chicken embryonic spleen at 6 hr, 24 hr, 48 hr, and 72 hr after administration of CpG ODN 2007 (B-class) in 18-day-old chicken embryos. Our data showed enhanced expression of IFN-gamma; interleukin (IL)-1 beta, IL-6, and IL-8; and oligoadenyl synthetase A mRNA after CpG ODN administration. In addition, CpG ODN administration to chicken embryos 24 hr before the challenge with infectious bronchitis virus (IBV) was capable of limiting IBV propagation in different embryonic tissues. Based on the kinetics and type of cytokines induced after in ovo administration of CpG ODN, it may be speculated that in ovo administration of CpG ODNs may enhance resistance from viral infection in neonatal chicks and that CpG ODNs may contribute toward the development of more effective and safer poultry vaccines including in ovo vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.