SUMMARYThe iconic Sonic Hedgehog (SHH) morphogen pathway is a fundamental orchestrator of embryonic development and stem cell maintenance, and is implicated in cancers in various organs. A key step in signalling is transfer of a palmitate group to the N-terminal cysteine residue of SHH, catalysed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT) resident in the endoplasmic reticulum (ER). Here, we present the high-resolution cryo-EM structure of HHAT bound to substrate analogue palmityl-coenzyme A and a SHH mimetic megabody. Surprisingly, we identified a heme group bound to an HHAT cysteine residue and show that this modification is essential for HHAT structure and function. A structure of HHAT bound to potent small molecule inhibitor IMP-1575 revealed conformational changes in the active site which occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the novel mechanism by which HHAT adapts the membrane environment to transfer a long chain fatty acid across the ER membrane from cytosolic acyl-CoA to a luminal protein substrate. This structure of a member of the protein-substrate membrane-bound O-acyltransferase (MBOAT) superfamily provides a blueprint for other protein substrate MBOATs, such as WNT morphogen acyltransferase Porcupine and ghrelin O-acyltransferase GOAT, and a template for future drug discovery.
Patched1 (PTCH1) is the principal tumour suppressor protein of the mammalian Hedgehog (HH) signalling pathway, implicated in embryogenesis and tissue homeostasis. PTCH1 inhibits the Class F G protein-coupled receptor Smoothened (SMO) via a debated mechanism involving modulating accessible cholesterol levels within ciliary membranes. Using extensive molecular dynamics (MD) simulations and free energy calculations to evaluate cholesterol transport through PTCH1, we find an energetic barrier of ~15-20 kJ mol-1for cholesterol export. In simulations we identify cation binding sites within the PTCH1 transmembrane domain (TMD) which may provide the energetic impetus for cholesterol transport. In silico data are coupled to in vivo biochemical assays of PTCH1 mutants to probe coupling between transmembrane motions and PTCH1 activity. Using complementary simulations of Dispatched1 (DISP1) we find that transition between inward-open and solvent occluded states is accompanied by Na+induced pinching of intracellular helical segments. Thus, our findings illuminate the energetics and ion-coupling stoichiometries of PTCH1 transport mechanisms, whereby 1-3 Na+or 2-3 K+couple to cholesterol export, and provide the first molecular description of transitions between distinct transport states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.