The impact of temperature inhomogeneity, surface charge and surface mass densities on the stability analysis of charged surface waves at the interface between dense, incompressible, radiative, self-gravitating magnetized electron–ion plasma and vacuum is investigated. For such an incompressible plasma system, the temperature inhomogeneity is governed by an energy balance equation. Adopting the one-fluid magnetohydrodynamic (MHD) approximation, a general dispersion relation is obtained for capillary surface waves, which takes into account gravitational, radiative and magnetic field effects. The dispersion relation is analysed to obtain the conditions under which the plasma–vacuum interface may become unstable. In the absence of electromagnetic (EM) pressure, astrophysical objects undergo gravitational collapse through Jeans surface oscillations in contrast to the usual central contraction of massive objects due to enhanced gravity. EM radiation does not affect the dispersion relation much, but actually tends to stabilize the Jeans surface instability. In certain particular cases, pure gravitational radiation may propagate on the plasma vacuum interface. The growth rate of radiative dissipative instability is obtained in terms of the wavevector. Our theoretical model of the Jeans surface instability is applicable in astrophysical environments and also in laboratory plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.