CD23 is the low-affinity Fc receptor for IgE. When expressed on B cells, CD23 appears to play a role in regulation of IgE synthesis. Polymorphisms within FCER2, the gene encoding CD23, have been associated with atopy, increased risk of exacerbations in patients with asthma, and high serum IgE levels. A single-nucleotide polymorphism (rs2228137) present in exon 4 of FCER2 encodes a nonsynonymous amino acid change (R62W) and is the subject of the present analysis. Human B cell stable transfectants were established to characterize the functional relevance of the R62W SNP. We demonstrate that CD23b-R62W-expressing human B cells bind IgE with greater affinity than wild-type cells and display differences in kinetics of CD23-mediated ERK1/2 activation that may be responsible for the increased levels of Egr-1 mRNA observed after stimulation through CD23. Finally, the R62W SNP seems to alter the tertiary or quaternary structure of CD23 because in the absence of N-glycosylation the CD23b-R62W-expressing cells appear to be less sensitive to endogenous proteases. These observations may have implications in mechanisms responsible for the atopic phenotypes observed in patients with asthma who possess this genotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.