Beyond mean-field methods are very successful tools for the description of large-amplitude collective motion for even-even atomic nuclei. The state-of-the-art framework of these methods consists in a generator coordinate method based on angular-momentum and particle-number projected triaxially deformed Hartree-Fock-Bogoliubov (HFB) states. The extension of this scheme to odd-mass nuclei is a long-standing challenge. We present for the first time such an extension, where the generator coordinate space is built from self-consistently blocked one-quasiparticle HFB states. One of the key points for this success is that the same Skyrme interaction is used for the mean-field and the pairing channels, thus avoiding problems related to the violation of the Pauli principle. An application to ^{25}Mg illustrates the power of our method, as agreement with experiment is obtained for the spectrum, electromagnetic moments, and transition strengths, for both positive and negative parity states and without the necessity for effective charges or effective moments. Although the effective interaction still requires improvement, our study opens the way to systematically describe odd-A nuclei throughout the nuclear chart.
We study pairing vibrations in 18,20,22 O and 42,44,46 Ca nuclei solving the time-dependent HartreeFock-Bogoliubov equation in coordinate space with spherical symmetry. We use the SLy4 Skyrme functional in the normal part of the energy density functional and a local density dependent functional in its pairing part. Pairing vibrations are excited by two-neutron transfer operators. Strength distributions are obtained using the Fourier transform of the time-dependent response of two-neutron pair-transfer observables in the linear regime. Results are in overall agreement with quasiparticle random phase approximation calculations for Oxygen isotopes, though differences appear when increasing the neutron number. Both low lying pairing modes and giant pairing vibrations (GPV) are discussed. The GPV is observed in the Oxygen but not in the Calcium isotopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.