We characterize the three-dimensional Banach spaces in which any Chebyshev set is monotone path-connected. Namely, we show that in a three-dimensional space
each Chebyshev set is monotone path- connected if and only if one of the following two conditions is satisfied: any exposed point of the unit sphere of
is a smooth point or
(that is, the unit sphere of
is a cylinder).
Bibliography: 17 titles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.