Here, we show that the synaptic vesicle protein SV2A is the brain binding site of levetiracetam (LEV), a new antiepileptic drug with a unique activity profile in animal models of seizure and epilepsy. The LEV-binding site is enriched in synaptic vesicles, and photoaffinity labeling of purified synaptic vesicles confirms that it has an apparent molecular mass of Ϸ90 kDa. Brain membranes and purified synaptic vesicles from mice lacking SV2A do not bind a tritiated LEV derivative, indicating that SV2A is necessary for LEV binding. LEV and related compounds bind to SV2A expressed in fibroblasts, indicating that SV2A is sufficient for LEV binding. No binding was observed to the related isoforms SV2B and SV2C. Furthermore, there is a high degree of correlation between binding affinities of a series of LEV derivatives to SV2A in fibroblasts and to the LEV-binding site in brain. Finally, there is a strong correlation between the affinity of a compound for SV2A and its ability to protect against seizures in an audiogenic mouse animal model of epilepsy. These experimental results suggest that SV2A is the binding site of LEV in the brain and that LEV acts by modulating the function of SV2A, supporting previous indications that LEV possesses a mechanism of action distinct from that of other antiepileptic drugs. Further, these results indicate that proteins involved in vesicle exocytosis, and SV2 in particular, are promising targets for the development of new CNS drug therapies.
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677–1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.
(S)-alpha-ethyl-2-oxopyrrolidine acetamide 2 (levetiracetam, Keppra, UCB S.A.), a structural analogue of piracetam, has recently been approved as an add-on treatment of refractory partial onset seizures in adults. This drug appears to combine significant efficacy and high tolerability due to a unique mechanism of action. The latter relates to a brain-specific binding site for 2 (LBS for levetiracetam binding site) that probably plays a major role in its antiepileptic properties. Using this novel molecular target, we initiated a drug-discovery program searching for ligands with significant affinity to LBS with the aim to characterize their therapeutic potential in epilepsy and other central nervous system diseases. We systematically investigated the various positions of the pyrrolidone acetamide scaffold. We found that (i) the carboxamide moiety on 2 is essential for affinity; (ii) among 100 different side chains, the preferred substitution alpha to the carboxamide is an ethyl group with the (S)-configuration; (iii) the 2-oxopyrrolidine ring is preferred over piperidine analogues or acyclic compounds; (iv) substitution of positions 3 or 5 of the lactam ring decreases the LBS affinity; and (v) 4-substitution of the lactam ring by small hydrophobic groups improves the in vitro and in vivo potency. Six interesting candidates substituted in the 4-position have been shown to be more potent antiseizure agents in vivo than 2. Further pharmacological studies from our group led to the selection of (2S)-2-[(4R)-2-oxo-4-propylpyrrolidin-1-yl]butanamide 83alpha (ucb 34714) as the most interesting candidate. It is approximately 10 times more potent than 2 as an antiseizure agent in audiogenic seizure-prone mice. A clinical phase I program has been successfully concluded and 83alpha will commence several phase II trials during 2003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.