<p>The given article contains the research results of carbon-containing chromite pellets’ production from off-grade raw material with application of internal coal-mining overburden rocks as flux. Besides, for the purpose of improvement of ecological situation in industrial regions and expansion of a raw-material base for ferrochrome and pigments manufacture we suppose to use in a charge composition the dust of aspiration units and electrostatic precipitators, which is formed at the preparation of raw materials and production of chromite pellets. The production technology of chromite pellets with use of a slime formed at the concentration of chrome ores as a binding substance was developed. Testing the suggested technology has been carried out in laboratory and trial conditions. The data of a chemical composition of initial components of a charge and calcined carbon-containing chromite pellets have shown economic and ecological efficiency of the developed technological process. Research results lead to the conclusion that the proposed granulation feedstock mixture pellets with a moisture content of 11–12% are obtained crude granules have a compressive strength of 2.3–3.2 kg/splashed. Increasing the content of Cr<sub>2</sub>O<sub>3</sub> in the pellets to 7.6% occurs due to the increase in the extraction of chromium oxide and due to the charge of chromium oxides contained in the sludge, as well as removal of the batch formulation was heat treated carbonates, and volatile organic substances. It was established that during this mode, the temperature in the lower layers is about 1200 °C, and a reduction in natural gas consumption achieves 50% and the residual carbon content in the pellets is about 1.5%, which leads to improvement of technical and economic indices of production chromite pellets and ferrochrome.</p>
Analysis of modern scientific literature and patents has shown the absence of acid-free production technology of a mechanically activated multicomponent mineral fertilizer containing water-holding substances. Experimental researches connecting with mechanochemical activation and physicochemical properties of Karatau phosphorites prove a possibility of development of a new multicomponent mineral fertilizer. Application of inorganic and organic activators considerably improves qualities of fertilizers because the developed fertilizer mixtures contain nitrogen, phosphorus, potassium, humate and microelements. The suggested technology intends to use wastes of coal mining that leads to presence of humates and microelements in the end product. It was determined, that content of total nitrogen, phosphorus and potassium depends on a form of nitrogen-phosphorus-potassium-containing substances. The given article contains data of researches connecting with use of multicomponent mineral fertilizers in field conditions for cotton cultivation on irrigated light sierozems consisting of soil-forming rocks of loess and loess-type clay loams. The research results show the increase of soil’s fertility and cotton’s productivity. Studying of agronomic efficiency of the new kinds of mechanically activated multicomponent mineral fertilizers at the cultivation of a bean-cereal mixture has been carried out in the Negorelsk experimental nursery-garden of the Belarus State Technical University on a sod-podzol sandy-loam soil and has shown the essential influence on productivity and quality of the bean-cereal mixture. The researches fulfilled on a sod-podzol sandy-loam soil have revealed the essential increase of key indicators of feed productivity. Application of the mineral fertilizers has promoted increase of nitrogen, phosphorus and potassium content in green plants. In so doing content of calcium and magnesium in green mass depends from quantity of the fertilizer used to a smaller extent. An essential difference of crop capacity and feed productivity indicators depending on forms of the applied mineral fertilizers has not been found.
This article presents the complex processing of low-grade and substandard chromium ores, as well as sludge tailings, with the production of composite chromium-containing materials and pigments, while improving environmental performance in the Republic of Kazakhstan through the utilization and processing of technogenic raw materials. In this work, to study the physicochemical properties of the starting materials, modern analytical, thermodynamic, chemical, granulometric, as well as computational, mathematical, laboratory, and experimental methods were used. In particular, studies of a method for producing composite pellets for chromite pigments based on industrial technogenic waste of the Republic of Kazakhstan are presented. Based on the results of the experimental studies, composite pellets were obtained, having a compressive strength of 150–220 kg/pellet and containing 49.7% of chromium oxide and 0.5–1.0% of carbon in its composition. The resulting chromite pigment based on the composite pellets is a modification of chromium oxohydroxide with the formula γ-CrOOH. The density of the resulting pigment is 3.4 kg/m3. The chromite pigment based on the composite pellets is recommended for use in various coloring compositions, including using it for printing on cotton and mixed fabrics intended for sewing outerwear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.