Understanding the ferroelectrocity in magnetic ferroelectric oxides is of both fundamental and technological importance. Here, we identify the nature of the ferroelectric phase transition in the hexagonal manganite, YMnO(3), using a combination of single-crystal X-ray diffraction, thorough structure analysis and first-principles density-functional calculations. The ferroelectric phase is characterized by a buckling of the layered MnO(5) polyhedra, accompanied by displacements of the Y ions, which lead to a net electric polarization. Our calculations show that the mechanism is driven entirely by electrostatic and size effects, rather than the usual changes in chemical bonding associated with ferroelectric phase transitions in perovskite oxides. As a result, the usual indicators of structural instability, such as anomalies in Born effective charges on the active ions, do not hold. In contrast to the chemically stabilized ferroelectrics, this mechanism for ferroelectricity permits the coexistence of magnetism and ferroelectricity, and so suggests an avenue for designing novel magnetic ferroelectrics.
Domains are of unparalleled technological importance as they are used for information storage and for electronic, magnetic and optical switches. They are an essential property of any ferroic material. Three forms of ferroic order are widely known: ferromagnetism, a spontaneous magnetization; ferroelectricity, a spontaneous polarization; and ferroelasticity, a spontaneous strain. It is currently debated whether to include an ordered arrangement of magnetic vortices as a fourth form of ferroic order, termed ferrotoroidicity. Although there are reasons to expect this form of order from the point of view of thermodynamics, a crucial hallmark of the ferroic state--that is, ferrotoroidic domains--has not hitherto been observed. Here ferrotoroidic domains are spatially resolved by optical second harmonic generation in LiCoPO4, where they coexist with independent antiferromagnetic domains. Their space- and time-asymmetric nature relates ferrotoroidics to multiferroics with magnetoelectric phase control and to other systems in which space and time asymmetry leads to possibilities for future applications.
We present evidence that the insulator-to-metal transition in La(1-x)Ca(x)MnO3 near x approximately 0.2 is driven by the suppression of coherent Jahn-Teller distortions, originating from d-type orbital ordering. The orbital-ordered state is characterized by large long-range Q2 distortions below T(O'- O*). Above T(O'- O*) we find evidence for coexistence between an orbital-ordered and an orbital-disordered state. This behavior is discussed in terms of electronic phase separation in an orbital-ordered insulating and an orbital-disordered metallic state.
In three different antiferromagnetic (AFM) materials we show that the magnetization dynamics of AFM compounds differs noticeably from that of ferromagnetic compounds. Optical second harmonic generation and linear reflection were used to monitor with a temporal resolution of <1 ps the evolution of the AFM order parameter subsequent to an intense optical excitation. Comparison of the dynamical properties of the model antiferromagnet Cr2O3 with model ferro- and ferrimagnets reveals that spin–lattice relaxation as the temporally limiting thermalization process of the magnetic subsystem is more complex and inherently faster than in compounds displaying a spontaneous magnetization. The exchange-bias compound NiO exhibits an ultrafast photoinduced AFM phase transition in the course of which the AFM order parameter is switched by 90°. Properly timed sequences of pump pulses can repeatedly reorient the AFM order parameter within 10 ps, thus demonstrating ultrafast AFM switching. In the colossal-magnetoresistance compound Pr1−xCaxMnO3 optical pumping triggers a transition from an insulating AFM to a conducting metallic state within 230 fs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.