Abstract. The analysis of heat transfer to the non-Newtonian powerlaw fluid flow past a continuously moving flat porous plate in presence of suction/injection with heat flux has been presented. We have obtained the solution using the method of successive approximations, starting with zero approximation. It has been observed that the results obtained for n = 1 are in good agreement with the corresponding results for Newtonian fluid. For various values of flow index n and the suction/injection parameter, temperature profiles and rate of heat transfer have been presented graphically. The effect of suction is to decrease in temperature and the rate of heat transfer, while reverse nature occurs for injection.W/irmeiibertragung bei Nicht-Newton'schen Flniden, die dem Potenz-Ansatz gehorchen, enflang einer stetig bewegten, flachen, por6sen Platte mit W/irmestrom Zusammenfassung. Hier ist die Berechnung der Wfirmetibertragung bei Nicht-Newton'schen Fluiden entlang einer sich stetig bewegenden, flachen Platte mit W/irmestrom dargestellt warden, bei der die Grenzschicht abgesaugt bzw. eingeblasen wird. Die L6sung erhielten die Verfasser mit dem Verfahren der sukzessiven Approximation, beginnend mit der Nullapproximation. Es ist festgestellt worde, da6 die erhaltenen Ergebnisse fiir n = 1 mit den Ergebnissen f/~ Newton'sche Fluide iibereinstimmen. Ffir verschiedene Werte des Str6mungsindexes n und des Absaug-/Einblasparameters sind die Temperaturprofile und die Wfirmetibertragungsraten graphisch dargestellt warden. Beim Absaugen ergibt sich eine Erniedrigung der Temperatur und der W/irmetibertragungsrate, w/ihrend genau das Gegenteil beim Einblasen eintritt.
Abstract. In this paper the velocity and temperature distributions on a semi-infinite flat plate embedded in a saturated porous medium are obtained for the governing equations (Kaviany [7]) following the technique adopted by Chandrashekara [2] which are concerned with the interesting situations of the existence of transverse, velocity and thermal boundary layers. Here the pressure gradient is just balanced by the first and second order solid matrix resistances for small permeability and observed that by increasing of the flow resistance the asymptotic value for the heat transfer rate increases. Further we concluded that the transverse boundary layers are thicker than that of axial boundary layers. Hence we evaluated the expressions for the boundary layer thickness, the shear stress at the semi-infinite plate and ~r (the ratio of the thicknesses of the thermal boundary layer and momentum boundary layer). The variations of these quantities for different values of the porous parameter B and the flow resistance F have been discussed in detail with the help of tables. The curves for velocity and temperature distributions have been plotted for different values of B and E Lastly we have evaluated the heat flux q (x) and found that it depends entirely upon the Reynolds number Re, Prandtl number Pr,B and E In the limiting case B ~ 0, q (x) coincides with the well known Pohlhausen Formula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.