A sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV. Even though the detector construction is still underway, half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the KM2A data analysis pipeline and the first observation of the Crab Nebula, a standard candle in very high energy γ-ray astronomy. We detect γ-ray signals from the Crab Nebula in both energy ranges of 10 100 TeV and 100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance, including angular resolution, pointing accuracy and cosmic-ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE = (1.13 0.05 0.08 ) 10 (E/20 TeV) cm s TeV . It is consistent with previous measurements by other experiments. This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena, such as cosmic PeVatrons, might be discovered.
Aims. Gamma-ray burst (GRB) 190829A (z = 0.0785) was detected by Fermi and Swift and also at very high energy (VHE) by the High-Energy Stereoscopic System (H.E.S.S.) telescopes. The prompt emission displayed two emission episodes separated by a quiescent gap of ∼40 s. We present the 10.4 m Gran Telescopio Canarias (GTC) observations of the afterglow of GRB 190829A and its underlying supernova. We also compare GRB 190829A to GRB 180728A, a GRB with similar behaviour, and discuss the implications on underlying physical mechanisms producing these two GRBs. Methods. We present multi-band photometric data along with spectroscopic follow-up observations taken with the 10.4 m GTC telescope. Together with the data from the prompt emission, the 10.4 m GTC data are used to understand the emission mechanisms and possible progenitor. Results. A detailed analysis of the multi-band observations of the afterglow requires the cooling frequency to pass between the optical and X-ray bands at early epochs. The afterglow then transitions to the underlying supernova (SN) 2019oyw, which dominates later on. Conclusions. Although the prompt emission temporal properties of GRB 190829A and GRB 180728A are similar, the two pulses are different in the spectral domain. We find that SN 2019oyw associated with GRB 190829A is powered by Ni decay and is a Type Ic-BL SN. The spectroscopic and photometric properties of this SN are consistent with those observed for SN 1998bw, but evolved earlier.
We report the discovery of a new unidentified extended γ-ray source in the Galactic plane named LHAASO J0341+5258 with a pretrial significance of 8.2 standard deviations above 25 TeV. The best-fit position is R.A. = 55.°34 ± 0.°11 and decl. = 52.°97 ± 0.°07. The angular size of LHAASO J0341+5258 is 0.°29 ± 0.°06stat ± 0.°02sys. The flux above 25 TeV is about 20% of the flux of the Crab Nebula. Although a power-law fit of the spectrum from 10 to 200 TeV with the photon index α = 2.98 ± 0.19stat ± 0.02sys is not excluded, the LHAASO data together with the flux upper limit at 10 GeV set by the Fermi-LAT observation, indicate a noticeable steepening of an initially hard power-law spectrum with a cutoff at ≈50 TeV. We briefly discuss the origin of ultra-high-energy gamma rays. The lack of an energetic pulsar and a young supernova remnant inside or in the vicinity of LHAASO J0341+5258 challenge, but do not exclude, both the leptonic and hadronic scenarios of gamma-ray production.
'Internal plateau' followed by a sharp decay is commonly seen in short gamma-ray burst (GRB) light curves. The plateau component is usually interpreted as the dipole emission from a supra-massive magnetar, and the sharp decay may imply the collapse of the magnetar to a black hole (BH). Fall-back accretion onto the new-born BH could produce long-lasting activities via the Blandford-Znajek (BZ) process. The magnetic flux accumulated near the BH would be confined by the accretion disks for a period of time. As the accretion rate decreases, the magnetic flux is strong enough to obstruct gas infall, leading to a magnetically-arrested disk (MAD). Within this scenario, we show that the BZ process could produce two types of typical X-ray light curves: type I exhibits a long-lasting plateau, followed by a power-law decay with slopes ranging from 5/3 to 40/9; type II shows roughly a single power-law decay with slope of 5/3. The former requires low magnetic filed strength, while the latter corresponds to relatively high values. We search for such signatures of the new-born BH from a sample of short GRBs with an internal plateau, and find two candidates: GRB 101219A and GRB 160821B, corresponding to type II and type I light curve, respectively. It is shown that our model can explain the data very well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.