A meta-analysis of the potential effect of forage provision on growth performance and rumen fermentation of dairy calves was conducted using published data from the literature (1998-2016). Meta-regression was used to evaluate the effects of different forage levels, forage sources, forage offering methods, physical forms of starter, and grain sources on the heterogeneity of the results. We considered 27 studies that reported the effects of forage provision to dairy calves. Estimated effect sizes of forage were calculated on starter feed intake, average daily gain (ADG), feed efficiency (FE), body weight (BW), and rumen fermentation parameters. Intake of starter feed, ADG, BW, ruminal pH, and rumen molar proportion of acetate increased when supplementing forage but FE decreased. Heterogeneity (the amount of variation among studies) was significant for intake of starter feed, ADG, FE, final BW, and rumen fermentation parameters. Improving overall starter feed intake was greater in calves offered alfalfa hay compared with those offered other types of forages. During the milk feeding and overall periods, improving ADG was greater for calves fed a high level of forage (>10% in dry matter) compared with those fed a low level of forage (≤10% in dry matter) diets. The advantages reported in weight gain at a high level of forage could be due to increased gut fill. Improving overall ADG was lower for calves offered forages with textured starter feed compared with ground starter feed. The meta-regression analysis revealed that changes associated with forage provision affect FE differently for various forage sources and forage offering methods during the milk-feeding period. Forage sources also modulated the effect of feeding forage on ruminal pH during the milk-feeding period. In conclusion, forage has the potential to affect starter feed intake and performance of dairy calves, but its effects depend on source, level, and method of forage feeding and physical form of starter feed independently of grain sources included in the starter feed.
The objective of this study was to evaluate the effects of preweaning total plane of milk intake and weaning age on intake, growth performance, and blood metabolites of dairy calves. A total of 48 Holstein calves (40 ± 1.6 kg of body weight) were used in a 2 × 2 factorial arrangement with the factors of weaning age (d 60 vs. 75) and the total plane of milk intake (medium vs. high) during the preweaning period. Calves were assigned to 1 of 4 treatments: (1) calves fed medium plane of milk (MPM) intake and weaned on d 60 of age (MPM-60d, 4 L/d of milk from d 3 to 10, 6 L/d of milk from d 11 to 55, and 3 L/d of milk from d 56 to 60 of age; total milk intake = 317 L), (2) calves fed MPM intake and weaned on d 75 of age (MPM-75d, 4 L/d of milk from d 3 to 10 and 4.5 L/d of milk from d 11 to 70 of age followed by feeding 2.25 L/d of milk from d 71 to 75 of age; total milk intake = 313 L), (3) calves fed high plane of milk (HPM) intake and weaned on d 60 of age (HPM-60d, 4 L/d of milk from d 3 to 10, 6 L/d of milk from d 11 to 20, and 8.5 L/d of milk from d 21 to 55 followed by feeding 4.25 L/d of milk from d 56 to 60 of age; total milk intake = ∼411 L); and (4) calves fed HPM intake and weaned on d 75 (HPM-75d, 4 L/d of milk from d 3 to 10, and 6 L/d of milk from d 11 to 70 of age followed by feeding 3 L/d of milk from d 71 to 75 of age; total milk intake = 407 L) with no milk refusals. All of the calves were monitored up to d 90 of age. Regardless of weaning age, starter feed intake and dry matter intake (% of body weight) were lower in calves fed HPM compared with those receiving MPM. A tendency for the plane of milk intake × weaning age interaction was observed for metabolizable energy intake with the highest value was recorded with the HPM-75d calves. The lowest efficiency of metabolizable energy intake and average feed efficiency was observed in HPM-60d calves throughout the experimental period as compared with the other groups. An interaction was found between the total plane of milk intake and weaning age regarding effects on total average daily gain, average daily gain/metabolizable energy intake, feed efficiency, final body weight, and plasma β-hydroxybutyrate levels with the highest values measured in HPM-75d calves. Weaning on d 75 versus d 60 improved wither height and hip width, which tended to increase body length at the end of the trial. The results suggest that calves fed high amounts of milk during their preweaning period benefit from extending the time of weaning from 60 to 75 d of age based on average daily gain, feed efficiency, and final body weight.
The effects of supplementing ewe diets with either DL-methionine (DL-Met) or 2-hydroxy-4 (methylthio) butanoic acid isopropyl ester (HMBi) were investigated on ruminal in situ degradability of grain and forage diets, in vivo digestibility, rumen fermentation, blood metabolites and antioxidant status. Six ruminally cannulated ewes were used in a replicated 3 × 3 Latin square design with 28-day periods. The dietary treatments were as follows: (i) no supplemental Met (control; CON), (ii) DL-Met at 1.2 g/kg DM intake and (iii) HMBi at 1.8 g/kg dry matter (DM) intake. Corn grain, barley grain and alfalfa hay were evaluated for their ruminal degradability by both in situ incubation and effective degradability measurements of DM, neutral detergent fibre (NDF) and acid detergent fibre (ADF). Compared to other treatments, HMBi supplementation increased (p < 0.05) the digestibility of organic matter, crude protein and NDF and also tended (p = 0.08) to increase the digestibility of DM and ADF. Moreover, HMBi supplementation increased (p < 0.01) total VFA concentrations, the molar proportions of valerate and iso-butyrate in the rumen. Compared to the CON treatment, DL-Met and HMBi treatments tended (p = 0.08) to increase the molar proportion of acetate but decreased (p < 0.05) ruminal ammonia-N concentration. Ewes supplemented with HMBi and DL-Met recorded greater (p < 0.05) serum concentrations of glutathione peroxidase, total antioxidant capacity and superoxide dismutase than the CON treatment. Serum concentrations of glucose, total protein, albumin, high-density lipoprotein and very low-density lipoprotein were greater (p < 0.01) and serum urea nitrogen (p < 0.05), malonyl dialdehyde and triglyceride were lower (p < 0.02) in the HMBi and DL-Met animals than in the CON ewes. The results concluded that HMBi is a very effective form of dietary Met supplementation for ewes with a positive effect on digestion, rumen fermentation and serum antioxidant function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.