The present study reports clear evidence and physical significance of an interband transition due to the transition from the d band to an empty state in the conduction band in the optical absorption spectra of Au nanoparticles. The optical absorption due to interband transitions has been observed to dominate the plasmon absorption on decreasing the particle size. X-ray photoelectron spectroscopy and optical absorption studies reveal the metallic nature even for smaller sizes of 2.5 nm.
There are two main thrusts towards new permanent-magnet materials: improving extrinsic properties by nanostructuring and intrinsic properties by atomic structuring. Theory-both numerical and analytical-plays an important role in this ambitious research. Our analysis of aligned hard-soft nanostructures shows that soft-in-hard geometries are better than hard-in-soft geometries and that embedded soft spheres are better than sandwiched soft layers. Concerning the choice of the hard phase, both a high magnetization and a high anisotropy are necessary. As an example of first-principle research, we consider interatomic Mn exchange in MnAl and find strongly ferromagnetic intralayer exchange, in spite of the small Mn-Mn distances.
Activated reactive evaporation has been used to grow copper oxide nanoparticles in the size range of 8–100 nm. X-ray diffraction spectra clearly show the presence of a single Cu2O phase. Detailed x-ray photoelectron spectroscopy studies show an increase in the ionicity of the Cu2O system with decreasing particle size. Depth profiling and finger printing of x-ray photoelectron spectra reveal that the Cu2O nanoparticles are capped with a CuO surface layer of thickness ≈1.6 nm. This study strongly suggests that the stabilization of the cubic Cu2O nanophase is enhanced by the formation of a CuO surface layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.